82
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Influence of Crystal Habit on the Surface Free Energy and Interparticulate Bonding of L-Lysine Monohydrochloride Dihydrate

&
Pages 27-37 | Received 26 Jun 1998, Accepted 03 Jun 1999, Published online: 18 Jan 2000

REFERENCES

  • Johnson K. L., Kendall K., Roberts A. D. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 1971; 324: 301–313
  • Mangipudi V. S., Huang E., Tirrell M. Measurement of interfacial adhesion between glassy polymers using the JKR method. Macromol. Symp. 1996; 102: 131–143
  • Buckton G. Surface characterization: understanding sources of variability in the production and use of pharmaceuticals. J. Pharm. Pharmacol. 1995; 47: 265–275
  • York P. Solid-state properties of powders in the formulation and processing of solid dosage forms. Int. J. Pharm. 1983; 14: 1–28
  • Harder S. W., Zuck D. A., Wood J. A. Characterization of tablet surfaces by their critical surface-tension values. J. Pharm. Sci. 1970; 59: 1787–1792
  • Hansford D. T., Newton J. M., Wilson C. G. Influence of formulation on the absorption of orally administered griseofulvin preparations in rabbits. Pharm. Ind. 1980; 42(6)646–650
  • Buckton G., Newton J. M. Assessment of the wettability of powders by use of compressed powder discs. Powder Technol. 1986; 46: 201–208
  • Washburn E. W. The dynamics of capillary flow. Phys. Rev. 1921; 17: 273–283
  • Levine S., Neale G. H. Theory of the rate of wetting of a porous medium. Trans. Faraday Soc. 1975; 71: 12–18
  • Yang Y. W., Zografi G. Use of the Washburn-ideal equation for studying capillary flow in porous media. J. Pharm. Sci. 1986; 75: 719–720
  • Sheridan P. L., Buckton G., Storey D. The use of molecular orbital indices to predict the surface properties of pharmaceutical powders. Int. J. Pharm. 1995; 125: 141–149
  • Bandyopadhyay R., Erixon K., Young V. G., Jr., Grant D. J. W. Effects of water activity on recrystallized L-lysine monohydrochloride. Proceedings of the World Congress of Particle Technology 3, CDROM Version, Article No. 183. Brighton CenterUK 1998
  • Bandyopadhyay R., Grant D. J.W. Influence of crystal habit on the tableting properties of L-lysine monohydrochloride dihydrate. 1999, to be submitted for publication
  • Shanker R. M., Baltusis P. J., Hruska R. M. Development of a new technique for the assessment of wettability of powders, Abstract of poster presented at the 1994 American Association of Pharmaceutical Scientists Annual Meeting. Pharm. Res. 1994; 11: S–243
  • Zografi G., Tam S. S. Wettability of pharmaceutical solids: estimates of solid surface polarity. J. Pharm. Sci. 1976; 65: 1145–1149
  • Good R. J. K. L. MittalAdsorption at interfaces, . ACS Symposium Series 8, American Chemical Society, Washington, DC 1975; 28
  • Wu S. Calculation of interfacial tension in polymer systems. J. Poly. Sci. C 1971; 34: 19–30
  • Docherty R., Clydesdale G., Roberts K. J., Bennema P. Application of Bravais-Friedel-Donnay-Harker attachment energy and Ising models to predicting and understanding the morphology of molecular crystals. J. Phys. D: Appl. Phys. 1991; 24: 89–99
  • Berkovitch-Yellin Z. Toward an ab initio derivation of crystal morphology. J. Am. Chem. Soc. 1985; 107: 8239–8253
  • Mayo S. L., Olafson B. D., Goddard W. A. DREIDING: A generic force field. J. Phys. Chem. 1990; 94: 8897–8909
  • Wright D. A., Marsh R. E. The crystal structure of L-lysine monohydrochloride dihydrate. Acta Cryst. 1962; 15: 54–64
  • Bravais A. Etudes Crystallographiques, Paris. Computational Instruments Property Prediction Users's Reference. Property Prediction Module of Cerius2™, Version 3.0, BioSym/Molecular Simulations Inc., San Diego, CA 1913; 198–226
  • Friedel G. Studies on the law of Bravais. Bull. Soc. Franç. Min. 1907; 30: 326–455
  • Donnay J. D. H., Harker D. A new law of crystal morphology extending the law of Bravais. Am. Mineral. 1937; 22: 446–467
  • Rappé A. K., Goddard W. A. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 1991; 95: 3358–3363
  • Hartman P. The effect of surface relaxation on crystal habit: cases of corundum (α-Al2O3) and hematite (α-Fe2O3). J. Cryst. Growth 1989; 96: 667
  • Clydesdale G., Roberts K. J., Tefler G. B., Grant D. J. W. Modeling crystal morphology of α-lactose monohydrate. J. Pharm. Sci. 1997; 86: 135–141
  • Stout G. H., Jensen L. H. X-Ray Structure Determination: A Practical Guide. Macmillan Co., New York 1968; 34
  • Hiestand E. N., Smith D. P. Indices of tableting performance. Powder Technol. 1984; 38: 145–159
  • Fell J. T., Newton J. M. Determination of tablet strength by the diametral compression test. J. Pharm. Sci. 1970; 59: 688–691
  • Hiestand E. N., Peot C. B. Tensile strength of compressed powders and an example of incompatibility as end point on shear end locus. J. Pharm. Sci. 1974; 63: 605–612
  • Hiestand E. N., Bane J. M., Jr., Strzelinski E. P. Impact test for hardness of compressed powder compacts. J. Pharm. Sci. 1971; 60: 758–763
  • Cassie A. B. D., Baxter S. Wettability of porous surfaces. Trans. Faraday Soc. 1944; 40: 546–551
  • Zografi G., Johnson B. A. Effects of surface roughness on advancing and receding contact angles. Int. J. Pharm. 1984; 22: 159–176
  • Bradely R. S. The cohesive force between solid surfaces and the surface energy of solids. Phil. Mag. 1932; 13: 853–862
  • Derjaguin B. V., Muller V. M., Toporov Yu. P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 1975; 53: 314–326
  • Maugis D., Barquins M. Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. 1978; D11: 1989–2023
  • Naqwi A., Bandyopadhyay R., Grant D. J. W. A study of crystal growth using an in-situ optical technique. Proceedings of the World Congress of Particle Technology 3, CDROM version, Article No. 26. Brighton Center, UK 1998
  • Tabor D. Gases, Liquids and Solids and Other States of Matter. 3rd ed., Cambridge University Press, CambridgeUK 1991; 222–227
  • Orowan E. Fracture and strength of solids. Rep. Prog. Phys. Soc. (Lond.) 1949; 12: 185–232
  • Spriggs R. M. Expression for effect of porosity on elastic modulus of polycrystalline refractory material, particularly aluminum oxide. J. Am. Ceram. Soc. 1961; 44: 628–629
  • Griffith A. Phenomena of rupture and flow in solids. Phil. Trans. R. Soc. 1920; A221: 163–198
  • Griffith A. Theory of rupture. Proc. 1st Int. Conf. Appl. Mech. Delft 1924; 55
  • Mullier M. A., Seville J. P. K., Adams M. J. A fracture mechanics approach to the breakage of particle agglomerates. Chem. Eng. Sci. 1987; 42: 667–677
  • Kendall K., Alford N. M., Birchall J. D. The strength of green bodies. Inst. Ceram. Proc. Special Ceramics No. 8, Brit. Ceram. Proc. Institute of Ceramics, Stoke-on-TrentU.K. 1986; 255–265
  • Roberts R. J., Rowe R. C., York P. The relationship between the fracture properties, tensile strength and critical stress intensity factor of organic solids and their molecular structure. Int. J. Pharm. 1995; 125: 157–162
  • Inglis C. E. Stresses in a plate due to the presence of cracks and sharp corners. Trans. Inst. Nav. Arch. 1913; 55: 219–241

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.