19
Views
17
CrossRef citations to date
0
Altmetric
Article

Identification of SNAPc Subunit Domains That Interact with Specific Nucleotide Positions in the U1 and U6 Gene Promoters

, , , , &
Pages 2411-2423 | Received 18 Nov 2009, Accepted 25 Feb 2010, Published online: 20 Mar 2023
 

Abstract

The small nuclear RNA (snRNA)-activating protein complex (SNAPc) is essential for transcription of genes coding for the snRNAs (U1, U2, etc.). In Drosophila melanogaster, the heterotrimeric DmSNAPc recognizes a 21-bp DNA sequence, the proximal sequence element A (PSEA), located approximately 40 to 60 bp upstream of the transcription start site. Upon binding the PSEA, DmSNAPc establishes RNA polymerase II preinitiation complexes on U1 to U5 promoters but RNA polymerase III preinitiation complexes on U6 promoters. Minor differences in nucleotide sequence of the U1 and U6 PSEAs determine RNA polymerase specificity; moreover, DmSNAPc adopts different conformations on these different PSEAs. We have proposed that such conformational differences in DmSNAPc play a key role in determining the different polymerase specificities of the U1 and U6 promoters. To better understand the structure of DmSNAPc-PSEA complexes, we have developed a novel protocol that combines site-specific protein-DNA photo-cross-linking with site-specific chemical cleavage of the protein. This protocol has allowed us to map regions within each of the three DmSNAPc subunits that contact specific nucleotide positions within the U1 and U6 PSEAs. These data help to establish the orientation of each DmSNAPc subunit on the DNA and have revealed cases in which different domains of the subunits differentially contact the U1 versus U6 PSEAs.

View correction statement:
Identification of SNAPc Subunit Domains That Interact with Specific Nucleotide Positions in the U1 and U6 Gene Promoters

We thank Kathleen McNamara-Schroeder for excellent technical assistance.

This work was supported by National Science Foundation grant MCB-0842770 and in part by the California Metabolic Research Foundation. N.H.B. was a recipient of an Arne N. Wick predoctoral research fellowship from the California Metabolic Research Foundation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.