19
Views
17
CrossRef citations to date
0
Altmetric
Article

Identification of SNAPc Subunit Domains That Interact with Specific Nucleotide Positions in the U1 and U6 Gene Promoters

, , , , &
Pages 2411-2423 | Received 18 Nov 2009, Accepted 25 Feb 2010, Published online: 20 Mar 2023

REFERENCES

  • Bai, L., Z. X. Wang, J. B. Yoon, and R. G. Roeder. 1996. Cloning and characterization of the β subunit of human proximal sequence element-binding transcription factor and its involvement in transcription of small nuclear RNA genes by RNA polymerases II and III. Mol. Cell. Biol. 16:5419–5426.
  • Barakat, N. H., and W. E. Stumph. 2008. TBP recruitment to the U1 snRNA gene promoter is disrupted by substituting a U6 proximal sequence element A (PSEA) for the U1 PSEA. FEBS Lett. 582:2413–2416.
  • Crimmins, D. L., and S. M. Mische. 1996. Chemical cleavage of proteins in solution, p. 11.4.1-11.4.8. In V. B. Chanda, vol. 2, suppl. 4. (ed.), Current protocols in protein science. John Wiley & Sons, Inc., New York, NY.
  • Dahlberg, J. E., and E. Lund. 1991. How does III x II make U6? Science 254:1462–1463.
  • Dahlberg, J. E., and E. Lund. 1988. The genes and transcription of the major small nuclear RNAs, p. 38 –70. In M. L. Birnstiel (ed.), Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer Verlag KG, Heidelberg, Federal Republic of Germany.
  • Das, A., and V. Bellofatto. 2003. RNA polymerase II-dependent transcription in trypanosomes is associated with a SNAP complex-like transcription factor. Proc. Natl. Acad. Sci. U. S. A. 100:80–85.
  • Das, A., Q. Zhang, J. B. Palenchar, B. Chatterjee, G. A. Cross, and V. Bellofatto. 2005. Trypanosomal TBP functions with the multisubunit transcription factor tSNAP to direct spliced-leader RNA gene expression. Mol. Cell. Biol. 25:7314–7322.
  • Das, G., D. Henning, and R. Reddy. 1987. Structure, organization, and transcription of Drosophila U6 small nuclear RNA genes. J. Biol. Chem. 262:1187–1193.
  • Ford, E., M. Strubin, and N. Hernandez. 1998. The Oct-1 POU domain activates snRNA gene transcription by contacting a region in the SNAPc largest subunit that bears sequence similarities to the Oct-1 coactivator OBF-1. Genes Dev. 12:3528–3540.
  • Henry, R. W., E. Ford, R. Mital, V. Mittal, and N. Hernandez. 1998. Crossing the line between RNA polymerases: transcription of human snRNA genes by RNA polymerases II and III. Cold Spring Harbor Symp. Quant. Biol. 63:111–120.
  • Henry, R. W., B. C. Ma, C. L. Sadowski, R. Kobayashi, and N. Hernandez. 1996. Cloning and characterization of SNAP50, a subunit of the snRNA-activating protein complex SNAPc. EMBO J. 15:7129–7136.
  • Henry, R. W., C. L. Sadowski, R. Kobayashi, and N. Hernandez. 1995. A TBP-TAF complex required for transcription of human snRNA genes by RNA polymerases II and III. Nature 374:653–656.
  • Hernandez, G., F. Valafar, and W. E. Stumph. 2007. Insect small nuclear RNA gene promoters evolve rapidly yet retain conserved features involved in determining promoter activity and RNA polymerase specificity. Nucleic Acids Res. 35:21–34.
  • Hernandez, N. 2001. snRNA genes: a model system to study fundamental mechanisms of transcription. J. Biol. Chem. 276:26733–26736.
  • Hinkley, C. S., H. A. Hirsch, L. P. Gu, B. LaMere, and R. W. Henry. 2003. The small nuclear RNA-activating protein 190 Myb DNA binding domain stimulates TATA box-binding protein-TATA box recognition. J. Biol. Chem. 278:18649–18657.
  • Hung, K.-H., M. Titus, S. C. Chiang, and W. E. Stumph. 2009. A map of Drosophila melanogaster small nuclear RNA-activating protein complex (DmSNAPc) domains involved in subunit assembly and DNA binding. J. Biol. Chem. 284:22568–22579.
  • Jawdekar, G. W., A. Hanzlowsky, S. L. Hovde, B. Jelencic, M. Feig, J. H. Geiger, and R. W. Henry. 2006. The unorthodox SNAP50 zinc finger domain contributes to cooperative promoter recognition by human SNAPc. J. Biol. Chem. 281:31050–31060.
  • Jawdekar, G. W., and R. W. Henry. 2008. Transcriptional regulation of human small nuclear RNA genes. Biochim. Biophys. Acta 1779:295–305.
  • Jensen, R. C., Y. Wang, S. B. Hardin, and W. E. Stumph. 1998. The proximal sequence element (PSE) plays a major role in establishing the RNA polymerase specificity of Drosophila U-snRNA genes. Nucleic Acids Res. 26:616–622.
  • Lai, H.-T., H. Chen, C. Li, K. J. McNamara-Schroeder, and W. E. Stumph. 2005. The PSEA promoter element of the Drosophila U1 snRNA gene is sufficient to bring DmSNAPc into contact with 20 base pairs of downstream DNA. Nucleic Acids Res. 33:6579–6586.
  • Lai, H.-T., Y. S. Kang, and W. E. Stumph. 2008. Subunit stoichiometry of the Drosophila melanogaster small nuclear RNA activating protein complex (SNAPc). FEBS Lett. 582:3734–3738.
  • Li, C., G. A. Harding, J. Parise, K. J. McNamara-Schroeder, and W. E. Stumph. 2004. Architectural arrangement of cloned proximal sequence element-binding protein subunits on Drosophila U1 and U6 snRNA gene promoters. Mol. Cell. Biol. 24:1897–1906.
  • Lo, P. C. H., and S. M. Mount. 1990. Drosophila melanogaster genes for U1 snRNA variants and their expression during development. Nucleic Acids Res. 18:6971–6979.
  • Lobo, S. M., and N. T. Hernandez. 1994. Transcription of snRNA genes by RNA polymerases II and III, p. 127 –159. In R. C. Conaway and J. W. Conaway (ed.), Transcription: mechanisms and regulation. Raven Press, New York, NY.
  • Ma, B. C., and N. Hernandez. 2002. Redundant cooperative interactions for assembly of a human U6 transcription initiation complex. Mol. Cell. Biol. 22:8067–8078.
  • McNamara-Schroeder, K. J., R. F. Hennessey, G. A. Harding, R. C. Jensen, and W. E. Stumph. 2001. The Drosophila U1 and U6 gene proximal sequence elements act as important determinants of the RNA polymerase specificity of snRNA gene promoters in vitro and in vivo. J. Biol. Chem. 276:31786–31792.
  • Meijsing, S. H., M. A. Pufall, A. Y. So, D. L. Bates, L. Chen, and K. R. Yamamoto. 2009. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324:407–410.
  • Mittal, V., B. C. Ma, and N. Hernandez. 1999. SNAPc: a core promoter factor with a built-in DNA-binding damper that is deactivated by the Oct-1 POU domain. Genes Dev. 13:1807–1821.
  • Parry, H. D., D. Scherly, and I. W. Mattaj. 1989. ‘Snurpogenesis’: the transcription and assembly of U snRNP components. Trends Biochem. Sci. 14:15–19.
  • Schimanski, B., T. N. Nguyen, and A. Gunzl. 2005. Characterization of a multisubunit transcription factor complex essential for spliced-leader RNA gene transcription in Trypanosoma brucei. Mol. Cell. Biol. 25:7303–7313.
  • Su, Y., Y. Song, Y. Wang, L. Jessop, L. C. Zhan, and W. E. Stumph. 1997. Characterization of a Drosophila proximal-sequence-element-binding protein involved in transcription of small nuclear RNA genes. Eur. J. Biochem. 248:231–237.
  • Wang, Y., and W. E. Stumph. 1998. Identification and topological arrangement of Drosophila proximal sequence element (PSE)-binding protein subunits that contact the PSEs of U1 and U6 snRNA genes. Mol. Cell. Biol. 18:1570–1579.
  • Wong, M. W., R. W. Henry, B. C. Ma, R. Kobayashi, N. Klages, P. Matthias, M. Strubin, and N. Hernandez. 1998. The large subunit of basal transcription factor SNAPc is a Myb domain protein that interacts with Oct-1. Mol. Cell. Biol. 18:368–377.
  • Yoon, J. B., S. Murphy, L. Bai, Z. Wang, and R. G. Roeder. 1995. Proximal sequence element-binding transcription factor (PTF) is a multisubunit complex required for transcription of both RNA polymerase II- and RNA polymerase III-dependent small nuclear RNA genes. Mol. Cell. Biol. 15:2019–2027.
  • Yoon, J. B., and R. G. Roeder. 1996. Cloning of two proximal sequence element-binding transcription factor subunits (γ and δ) that are required for transcription of small nuclear RNA genes by RNA polymerases II and III and interact with the TATA-binding protein. Mol. Cell. Biol. 16:1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.