37
Views
42
CrossRef citations to date
0
Altmetric
Article

Mechanisms of Recombination between Diverged Sequences in Wild-Type and BLM-Deficient Mouse and Human Cells

&
Pages 1887-1897 | Received 03 Dec 2009, Accepted 29 Jan 2010, Published online: 20 Mar 2023
 

Abstract

Double-strand breaks (DSBs) are particularly deleterious DNA lesions for which cells have developed multiple mechanisms of repair. One major mechanism of DSB repair in mammalian cells is homologous recombination (HR), whereby a homologous donor sequence is used as a template for repair. For this reason, HR repair of DSBs is also being exploited for gene modification in possible therapeutic approaches. HR is sensitive to sequence divergence, such that the cell has developed ways to suppress recombination between diverged (“homeologous”) sequences. In this report, we have examined several aspects of HR between homeologous sequences in mouse and human cells. We found that gene conversion tracts are similar for mouse and human cells and are generally ≤100 bp, even in Msh2/ cells which fail to suppress homeologous recombination. Gene conversion tracts are mostly unidirectional, with no observed mutations. Additionally, no alterations were observed in the donor sequences. While both mouse and human cells suppress homeologous recombination, the suppression is substantially less in the transformed human cells, despite similarities in the gene conversion tracts. BLM-deficient mouse and human cells suppress homeologous recombination to a similar extent as wild-type cells, unlike Sgs1-deficient Saccharomyces cerevisiae.

Supplemental material for this article may be found at http://mcb.asm.org/.

This work was supported by grants R01GM54668 from the NIH and NSF0346354 from the National Science Foundation to M.J. J.R.L. was supported by NRSA Postdoctoral Fellowship F32GM084637 from the NIH.

We are grateful to the Jasin lab for helpful commentary regarding experimental design and analysis and to Kyoji Horie and Kosuke Yusa for providing the Blmtet/tet ES cells and Nathan Ellis and Karen Ouyang for providing human fibroblast cell lines.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.