35
Views
42
CrossRef citations to date
0
Altmetric
Article

Mechanisms of Recombination between Diverged Sequences in Wild-Type and BLM-Deficient Mouse and Human Cells

&
Pages 1887-1897 | Received 03 Dec 2009, Accepted 29 Jan 2010, Published online: 20 Mar 2023

REFERENCES

  • Adams, M. D., M. McVey, and J. Sekelsky. 2003. Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 299:265–267.
  • Allers, T., and M. Lichten. 2001. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106:47–57.
  • Bill, C. A., W. A. Duran, N. R. Miselis, and J. A. Nickoloff. 1998. Efficient repair of all types of single-base mismatches in recombination intermediates in Chinese hamster ovary cells. Competition between long-patch and G-T glycosylase-mediated repair of G-T mismatches. Genetics 149:1935–1943.
  • Bugreev, D. V., O. M. Mazina, and A. V. Mazin. 2009. Bloom syndrome helicase stimulates RAD51 DNA strand exchange activity through a novel mechanism. J. Biol. Chem. 284:26349–26359.
  • Chan, K.-L., P. S. North, and I. D. Hickson. 2007. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J. 26:3397–3409.
  • Chan, K. L., T. Palmai-Pallag, S. Ying, and I. D. Hickson. 2009. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat. Cell Biol. 11:753–760.
  • Chen, W., and S. Jinks-Robertson. 1999. The role of the mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast. Genetics 151:1299–1313.
  • Cho, J. W., G. J. Khalsa, and J. A. Nickoloff. 1998. Gene-conversion tract directionality is influenced by the chromosome environment. Curr. Genet 34:269–279.
  • Chu, W. K., and I. D. Hickson. 2009. RecQ helicases: multifunctional genome caretakers. Nat. Rev. Cancer 9:644–654.
  • Datta, A., A. Adjiri, L. New, G. F. Crouse, and S. Jinks-Robertson. 1996. Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:1085–1093.
  • Datta, A., M. Hendrix, M. Lipsitch, and S. Jinks-Robertson. 1997. Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc. Natl. Acad. Sci. U. S. A. 94:9757–9762.
  • de Wind, N., M. Dekker, A. Berns, M. Radman, and H. te Riele. 1995. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82:321–330.
  • de Wind, N., M. Dekker, N. Claij, L. Jansen, Y. v. Klink, M. Radman, G. Riggins, M. van der Valk, K. van 't Wout, and H. te Riele. 1999. HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat. Genet 23:359–362.
  • Elliott, B., and M. Jasin. 2002. Double-strand breaks and translocations in cancer. Cell Mol. Life Sci. 59:373–385.
  • Elliott, B., and M. Jasin. 2001. Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells. Mol. Cell. Biol. 21:2671–2682.
  • Elliott, B., C. Richardson, J. Winderbaum, J. A. Nickoloff, and M. Jasin. 1998. Gene conversion tracts from double-strand break repair in mammalian cells. Mol. Cell. Biol. 18:93–101.
  • Ellis, N. A., J. Groden, T.-Z. Ye, J. Straughen, D. J. Lennon, S. Ciocci, M. Proytcheva, and J. German. 1995. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83:655–666.
  • Ellis, N. A., M. Proytcheva, M. M. Sanz, T. Z. Ye, and J. German. 1999. Transfection of BLM into cultured bloom syndrome cells reduces the sister-chromatid exchange rate toward normal. Am. J. Hum. Genet. 65:1368–1374.
  • Ferguson, D. O., and F. W. Alt. 2001. DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 20:5572–5579.
  • Ferguson, D. O., and W. K. Holloman. 1996. Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc. Natl. Acad. Sci. U. S. A. 93:5419–5424.
  • Futaki, M., and J. M. Liu. 2001. Chromosomal breakage syndromes and the BRCA1 genome surveillance complex. Trends Mol. Med. 7:560–565.
  • Gangloff, S., J. P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein. 1994. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14:8391–8398.
  • German, J. 1969. Bloom's syndrome. I. Genetical and clinical observations in the first twenty-seven patients. Am. J. Hum. Genet. 21:196–227.
  • German, J., S. Schonberg, E. Louie, and R. S. Chaganti. 1977. Bloom's syndrome. IV. Sister-chromatid exchanges in lymphocytes. Am. J. Hum. Genet. 29:248–255.
  • Gilbertson, L. A., and F. W. Stahl. 1996. A test of the double-strand break repair model for meiotic recombination in Saccharomyces cerevisiae. Genetics 144:27–41.
  • Goldfarb, T., and E. Alani. 2005. Distinct roles for the Saccharomyces cerevisiae mismatch repair proteins in heteroduplex rejection, mismatch repair and nonhomologous tail removal. Genetics 169:563–574.
  • Gravel, S., J. R. Chapman, C. Magill, and S. P. Jackson. 2008. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 22:2767–2772.
  • Ira, G., A. Malkova, G. Liberi, M. Foiani, and J. E. Haber. 2003. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115:401–411.
  • Johnson, R. D., and M. Jasin. 2000. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19:3398–3407.
  • Kappeler, M., E. Kranz, K. Woolcock, O. Georgiev, and W. Schaffner. 2008. Drosophila bloom helicase maintains genome integrity by inhibiting recombination between divergent DNA sequences. Nucleic Acids Res. 36:6907–6917.
  • Langland, G., J. Kordich, J. Creaney, K. H. Goss, K. Lillard-Wetherell, K. Bebenek, T. A. Kunkel, and J. Groden. 2001. The Bloom's syndrome protein (BLM) interacts with MLH1 but is not required for DNA mismatch repair. J. Biol. Chem. 276:30031–30035.
  • LaRocque, J. R., B. Jacklevic, T. T. Su, and J. Sekelsky. 2007. Drosophila ATR in double-strand break repair. Genetics 175:1023–1033.
  • Liang, F., M. Han, P. J. Romanienko, and M. Jasin. 1998. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 95:5172–5177.
  • Luo, G., I. M. Santoro, L. D. McDaniel, I. Nishijima, M. Mills, H. Youssoufian, H. Vogel, R. A. Schultz, and A. Bradley. 2000. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat. Genet 26:424–429.
  • McVey, M., M. D. Adams, E. Staeva-Vieira, and J. Sekelsky. 2004. Evidence for multiple cycles of strand invasion during repair of double-strand gaps in Drosophila. Genetics 167:699–705.
  • McVey, M., J. R. LaRocque, M. D. Adams, and J. Sekelsky. 2004. Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion. Proc. Natl. Acad. Sci. U. S. A. 101:15694–15699.
  • Meyer-Kuhn, E., and E. Therman. 1979. Chromosome breakage and rejoining of sister chromatids in Bloom's syndrome. Chromosoma 73:275–286.
  • Modrich, P., and R. Lahue. 1996. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65:101–133.
  • Myung, K., A. Datta, C. Chen, and R. D. Kolodner. 2001. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat. Genet 27:113–116.
  • Nassif, N., J. Penney, S. Pal, W. R. Engels, and G. B. Gloor. 1994. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14:1613–1625.
  • Palmer, S., E. Schildkraut, R. Lazarin, J. Nguyen, and J. A. Nickoloff. 2003. Gene conversion tracts in Saccharomyces cerevisiae can be extremely short and highly directional. Nucleic Acids Res. 31:1164–1173.
  • Pâques, F., and J. E. Haber. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63:349–404.
  • Pâques, F., W.-Y. Leung, and J. E. Haber. 1998. Expansions and contractions in a tandem repeat caused by double-strand break repair. Mol. Cell. Biol. 18:2045–2054.
  • Pedrazzi, G., C. Z. Bachrati, N. Selak, I. Studer, M. Petkovic, I. D. Hickson, J. Jiricny, and I. Stagljar. 2003. The Bloom's syndrome helicase interacts directly with the human DNA mismatch repair protein hMSH6. Biol. Chem. 384:1155–1164.
  • Pedrazzi, G., C. Perrera, H. Blaser, P. Kuster, G. Marra, S. L. Davies, G. H. Ryu, R. Freire, I. D. Hickson, J. Jiricny, and I. Stagljar. 2001. Direct association of Bloom's syndrome gene product with the human mismatch repair protein MLH1. Nucleic Acids Res. 29:4378–4386.
  • Petes, T. D., R. E. Malone, and L. S. Symington. 1991. Recombination in yeast. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Porter, S. E., M. A. White, and T. D. Petes. 1993. Genetic evidence that the meiotic recombination hotspot at the HIS4 locus of Saccharomyces cerevisiae does not represent a site for a symmetrically processed double-strand break. Genetics 134:5–19.
  • Rao, V. A., C. Conti, J. Guirouilh-Barbat, A. Nakamura, Z.-H. Miao, S. L. Davies, B. Sacca, I. D. Hickson, A. Bensimon, and Y. Pommier. 2007. Endogenous γ-H2AX-ATM-Chk2 checkpoint activation in Bloom's syndrome helicase-deficient cells is related to DNA replication arrested forks. Mol. Cancer Res. 5:713–724.
  • Rayssiguier, C., D. S. Thaler, and M. Radman. 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342:396–401.
  • Redondo, P., J. Prieto, I. G. Munoz, A. Alibes, F. Stricher, L. Serrano, J. P. Cabaniols, F. Daboussi, S. Arnould, C. Perez, P. Duchateau, F. Paques, F. J. Blanco, and G. Montoya. 2008. Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456:107–111.
  • Richardson, C., and M. Jasin. 2000. Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol. Cell. Biol. 20:9068–9075.
  • Richardson, C., M. E. Moynahan, and M. Jasin. 1998. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 12:3831–3842.
  • Robertson, E. J. 1987. Embryo-derived stem cell lines, p. 71 –112. In E. J. Robertson (ed.), Teratocarcinomas and embryonic stem cells: a practical approach. IRL Press, Washington, DC.
  • Rothkamm, K., I. Kruger, L. H. Thompson, and M. Lobrich. 2003. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell. Biol. 23:5706–5715.
  • Schwacha, A., and N. Kleckner. 1995. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83:783–791.
  • Selva, E. M., L. New, G. F. Crouse, and R. S. Lahue. 1995. Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics 139:1175–1188.
  • Smih, F., P. Rouet, P. J. Romanienko, and M. Jasin. 1995. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 23:5012–5019.
  • Smith, J. A., L. A. Bannister, V. Bhattacharjee, Y. Wang, B. C. Waldman, and A. S. Waldman. 2007. Accurate homologous recombination is a prominent double-strand break repair pathway in mammalian chromosomes and is modulated by mismatch repair protein Msh2. Mol. Cell. Biol. 27:7816–7827.
  • Spell, R. M., and S. Jinks-Robertson. 2004. Examination of the roles of Sgs1 and Srs2 helicases in the enforcement of recombination fidelity in Saccharomyces cerevisiae. Genetics 168:1855–1865.
  • Stark, J. M., and M. Jasin. 2003. Extensive loss of heterozygosity is suppressed during homologous repair of chromosomal breaks. Mol. Cell. Biol. 23:733–743.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl. 1983. The double-strand-break repair model for recombination. Cell 33:25–35.
  • te Riele, H., E. R. Maandag, and A. Berns. 1992. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. U. S. A. 89:5128–5132.
  • Urnov, F. D., J. C. Miller, Y. L. Lee, C. M. Beausejour, J. M. Rock, S. Augustus, A. C. Jamieson, M. H. Porteus, P. D. Gregory, and M. C. Holmes. 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651.
  • Wang, Y., D. Cortez, P. Yazdi, N. Neff, S. J. Elledge, and J. Qin. 2000. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14:927–939.
  • Watt, P. M., I. D. Hickson, R. H. Borts, and E. J. Louis. 1996. SGS1, a homologue of the Bloom's and Werner's syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144:935–945.
  • Welz-Voegele, C., and S. Jinks-Robertson. 2008. Sequence divergence impedes crossover more than noncrossover events during mitotic gap repair in yeast. Genetics 179:1251–1262.
  • Wu, L., and I. D. Hickson. 2003. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426:870–874.
  • Yamagata, K., J. Kato, A. Shimamoto, M. Goto, and Y. Furuichi. 1998. Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc. Natl. Acad. Sci. U. S. A. 95:8733–8738.
  • Yusa, K., K. Horie, G. Kondoh, M. Kouno, Y. Maeda, T. Kinoshita, and J. Takeda. 2004. Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom's syndrome gene. Nature 429:896–899.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.