44
Views
96
CrossRef citations to date
0
Altmetric
Article

A Unique DNA Binding Domain Converts T-Cell Factors into Strong Wnt Effectors

, , , , , , , , & show all
Pages 8352-8363 | Received 14 Nov 2006, Accepted 05 Sep 2007, Published online: 27 Mar 2023
 

Abstract

Wnt regulation of gene expression requires binding of LEF/T-cell factor (LEF/TCF) transcription factors to Wnt response elements (WREs) and recruitment of the activator β-catenin. There are significant differences in the abilities of LEF/TCF family members to regulate Wnt target genes. For example, alternatively spliced isoforms of TCF-1 and TCF-4 with a C-terminal “E” tail are uniquely potent in their activation of LEF1 and CDX1. Here we report that the mechanism responsible for this unique activity is an auxiliary 30-amino-acid DNA interaction motif referred to here as the “cysteine clamp” (or C-clamp). The C-clamp contains invariant cysteine, aromatic, and basic residues, and surface plasmon resonance (SPR) studies with recombinant C-clamp protein showed that it binds double-stranded DNA but not single-stranded DNA or RNA (equilibrium dissociation constant = 16 nM). CASTing (Cyclic Amplification and Selection of Targets) experiments were used to test whether this motif influences WRE recognition. Full-length LEF-1, TCF-1E, and TCF-1E with a mutated C-clamp all bind nearly identical WREs (TYYCTTTGATSTT), showing that the C-clamp does not alter WRE specificity. However, a GC element downstream of the WRE (RCCG) is enriched in wild-type TCF-1E binding sites but not in mutant TCF-1E binding sites. We conclude that the C-clamp is a sequence-specific DNA binding motif. C-clamp mutations destroy the ability of β-catenin to regulate the LEF1 promoter, and they severely impair the ability of TCF-1 to regulate growth in colon cancer cells. Thus, E-tail isoforms of TCFs utilize two DNA binding activities to access a subset of Wnt targets important for cell growth.

Don Senear, Klemens Hertel, G. Wesley Hatfield, Jay Gralla, and Rob Steele provided suggestions and critique. Members of the Waterman and Marsh laboratories also provided useful input, critique, and reagents.

This work was funded by National Institutes of Health grants CA108697 and CA096878 to M.L.W. and HD36081 to J.L.M. We gratefully acknowledge the support of the Optical Biology Shared Resource and the Cancer Center Support grant (CA-62203) at the University of California, Irvine, for the SPR studies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.