44
Views
96
CrossRef citations to date
0
Altmetric
Article

A Unique DNA Binding Domain Converts T-Cell Factors into Strong Wnt Effectors

, , , , , , , , & show all
Pages 8352-8363 | Received 14 Nov 2006, Accepted 05 Sep 2007, Published online: 27 Mar 2023

REFERENCES

  • Ahn, J., and C. Prives. 2001. The C-terminus of p53: the more you learn the less you know. Nat. Struct. Biol. 8:730–732.
  • Arce, L., N. N. Yokoyama, and M. L. Waterman. 2006. Diversity of LEF/TCF action in development and disease. Oncogene 25:7492–7504.
  • Atcha, F. A., J. E. Munguia, T. W. Li, K. Hovanes, and M. L. Waterman. 2003. A new beta-catenin dependent activation domain in T cell factor. J. Biol. Chem. 278:16169–16175.
  • Ayed, A., F. A. Mulder, G. S. Yi, Y. Lu, L. E. Kay, and C. H. Arrowsmith. 2001. Latent and active p53 are identical in conformation. Nat. Struct. Biol. 8:756–760.
  • Batlle, E., J. T. Henderson, H. Beghtel, M. M. van den Born, E. Sancho, G. Huls, J. Meeldijk, J. Robertson, M. van de Wetering, T. Pawson, and H. Clevers. 2002. β-Catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/EphrinB. Cell 111:251–263.
  • Béland, M., N. Pilon, M. Houle, K. Oh, J. R. Sylvestre, P. Prinos, and D. Lohnes. 2004. Cdx1 autoregulation is governed by a novel Cdx1-LEF1 transcription complex. Mol. Cell. Biol. 24:5028–5038.
  • Boeckle, S., H. Pfister, and G. Steger. 2002. A new cellular factor recognizes E2 binding sites of papillomaviruses which mediate transcriptional repression by E2. Virology 293:103–117.
  • Connor, F., P. D. Cary, C. M. Read, N. S. Preston, P. C. Driscoll, P. Denny, C. Crane-Robinson, and A. Ashworth. 1994. DNA binding and bending properties of the post-meiotically expressed Sry-related protein Sox-5. Nucleic Acids Res. 22:3339–3346.
  • Crawford, H. C., B. Fingleton, M. D. Gustavson, N. Kurpios, R. A. Wagenaar, J. A. Hassell, and L. M. Matrisian. 2001. The PEA3 subfamily of Ets transcription factors synergizes with β-catenin-LEF-1 to activate matrilysin transcription in intestinal tumors. Mol. Cell. Biol. 21:1370–1383.
  • Daniels, D. L., and W. I. Weis. 2005. Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol. 12:364–371.
  • El-Tanani, M., A. Platt-Higgins, P. S. Rudland, and F. C. Campbell. 2004. Ets gene PEA3 cooperates with beta-catenin-Lef-1 and c-Jun in regulation of osteopontin transcription. J. Biol. Chem. 279:20794–20806.
  • Espinosa, J. M., and B. M. Emerson. 2001. Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol. Cell 8:57–69.
  • Giese, K., A. Amsterdam, and R. Grosschedl. 1991. DNA-binding properties of the HMG domain of the lymphoid-specific transcriptional regulator LEF-1. Genes Dev. 5:2567–2578.
  • Giese, K., J. Cox, and R. Grosscheldl. 1992. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69:185–196.
  • Göhler, T., M. Reimann, D. Cherny, K. Walter, G. Warnecke, E. Kim, and W. Deppert. 2002. Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain. J. Biol. Chem. 277:41192–41203.
  • Grosschedl, R., K. Giese, and J. Pagel. 1994. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 10:94–100.
  • Gustavson, M. D., H. C. Crawford, B. Fingleton, and L. M. Matrisian. 2004. Tcf binding sequence and position determines beta-catenin and Lef-1 responsiveness of MMP-7 promoters. Mol. Carcinog. 41:125–139.
  • Hallikas, O., K. Palin, N. Sinjushina, R. Rautiainen, J. Partanen, E. Ukkonen, and J. Taipale. 2006. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell 124:47–59.
  • He, T. C., A. B. Sparks, C. Rago, H. Hermeking, L. Zawel, L. T. da Costa, P. J. Morin, B. Vogelstein, and K. W. Kinzler. 1998. Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512.
  • Hecht, A., and M. P. Stemmler. 2003. Identification of a promoter-specific transcriptional activation domain at the C terminus of the Wnt effector protein T-cell factor 4. J. Biol. Chem. 278:3776–3785.
  • Hovanes, K., T. W. Li, J. E. Munguia, T. Truong, T. Milovanovic, J. Lawrence Marsh, R. F. Holcombe, and M. L. Waterman. 2001. Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat. Genet. 28:53–57.
  • Hovanes, K., T. W. H. Li, and M. L. Waterman. 2000. The human LEF-1 gene contains a promoter preferentially active in lymphocytes and encodes multiple isoforms derived from alternative splicing. Nucleic Acids Res. 28:1994–2003.
  • Hurlstone, A., and H. Clevers. 2002. T-cell factors: turn-ons and turn-offs. EMBO J. 21:2303–2311.
  • Jho, E.-H., T. Zhang, C. Domon, C.-K. Joo, J. N. Freund, and F. Costantini. 2002. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22:1172–1183.
  • Kitayner, M., H. Rozenberg, N. Kessler, D. Rabinovich, L. Shaulov, T. E. Haran, and Z. Shakked. 2006. Structural basis of DNA recognition by p53 tetramers. Mol. Cell 22:741–753.
  • Love, J. J., X. Li, D. A. Case, K. Giese, R. Grosschedl, and P. E. Wright. 1995. Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376:791–795.
  • Love, J. J., X. Li, J. Chung, H. J. Dyson, and P. E. Wright. 2004. The LEF-1 high-mobility group domain undergoes a disorder-to-order transition upon formation of a complex with cognate DNA. Biochemistry 43:8725–8734.
  • Maeda, T., R. M. Hobbs, T. Merghoub, I. Guernah, A. Zelent, C. Cordon-Cardo, J. Teruya-Feldstein, and P. P. Pandolfi. 2005. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature 433:278–285.
  • McKinney, K., M. Mattia, V. Gottifredi, and C. Prives. 2004. p53 linear diffusion along DNA requires its C terminus. Mol. Cell 16:413–424.
  • McKinney, K., and C. Prives. 2002. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol. Cell. Biol. 22:6797–6808.
  • Oshel, K. M., J. B. Knight, K. T. Cao, M. V. Thai, and A. L. Olson. 2000. Identification of a 30-base pair regulatory element and novel DNA binding protein that regulates the human GLUT4 promoter in transgenic mice. J. Biol. Chem. 275:23666–23673.
  • Prieve, M. G., K. L. Guttridge, J. E. Munguia, and M. L. Waterman. 1998. Differential importin—a recognition and nuclear transport by nuclear localization signals within the high-mobility-group DNA binding domains of lymphoid enhancer factor 1 and T-cell factor 1. Mol. Cell. Biol. 18:4819–4832.
  • Pukrop, T., D. Gradl, K. A. Henningfeld, W. Knochel, D. Wedlich, and M. Kuhl. 2001. Identification of two regulatory elements within the high mobility group box transcription factor XTCF-4. J. Biol. Chem. 276:8968–8978.
  • Scaffidi, P., and M. E. Bianchi. 2001. Spatially precise DNA bending is an essential activity of the sox2 transcription factor. J. Biol. Chem. 276:47296–47302.
  • Shtutman, M., J. Zhurinsky, I. Simcha, C. Albanese, M. D'Amico, R. Pestell, and A. Ben-Ze'ev. 1999. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc. Natl. Acad. Sci. USA 96:5522–5527.
  • Skehan, P., R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, and M. R. Boyd. 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82:1107–1112.
  • Tanaka, K., J. Shouguchi-Miyata, N. Miyamoto, and J. E. Ikeda. 2004. Novel nuclear shuttle proteins, HDBP1 and HDBP2, bind to neuronal cell-specific cis-regulatory element in the promoter for the human Huntington's disease gene. J. Biol. Chem. 279:7275–7286.
  • Vadlamudi, U., H. M. Espinoza, M. Ganga, D. M. Martin, X. Liu, J. F. Engelhardt, and B. A. Amendt. 2005. PITX2, beta-catenin and LEF-1 interact to synergistically regulate the LEF-1 promoter. J. Cell Sci. 118:1129–1137.
  • van Beest, M., D. Dooijes, M. van De Wetering, S. Kjaerulff, A. Bonvin, O. Nielsen, and H. Clevers. 2000. Sequence-specific high mobility group box factors recognize 10-12-base pair minor groove motifs. J. Biol. Chem. 275:27266–27273.
  • Van de Wetering, M., J. Castrop, V. Korinek, and H. Clevers. 1996. Extensive alternative splicing and dual promoter usage generate Tcf-1 protein isoforms with differential transcription control properties. Mol. Cell. Biol. 16:745–752.
  • van de Wetering, M., R. Cavallo, D. Dooijes, M. van Beest, J. van Es, J. Loureiro, A. Ypma, D. Hursh, T. Jones, A. Bejsovec, M. Peifer, M. Mortin, and H. Clevers. 1997. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88:789–799.
  • van de Wetering, M., E. Sancho, C. Verweij, W. de Lau, I. Oving, A. Hurlstone, K. van der Horn, E. Batlle, D. Coudreuse, A. P. Haramis, M. Tjon-Pon-Fong, P. Moerer, M. van den Born, G. Soete, S. Pals, M. Eilers, R. Medema, and H. Clevers. 2002. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250.
  • van Noort, M., and H. Clevers. 2002. TCF transcription factors, mediators of Wnt-signaling in development and cancer. Dev. Biol. 244:1–8.
  • Werner, M., J. Huth, A. Gronenborn, and G. Clore. 1995. Molecular basis of human 46X, Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell 81:705–714.
  • Wright, W. E., M. Binder, and W. Funk. 1991. Cyclic amplification and selection of targets (CASTing) for the myogenin consensus binding site. Mol. Cell. Biol. 11:4104–4110.
  • Yochum, G. S., S. McWeeney, V. Rajaraman, R. Cleland, S. Peters, and R. H. Goodman. 2007. Serial analysis of chromatin occupancy identifies beta-catenin target genes in colorectal carcinoma cells. Proc. Natl. Acad. Sci. USA 104:3324–3329.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.