4
Views
64
CrossRef citations to date
0
Altmetric
Research Article

Multiple Changes in E2F Function and Regulation Occur upon Muscle Differentiation

, , , &
Pages 2252-2262 | Received 14 Oct 1994, Accepted 25 Jan 1995, Published online: 30 Mar 2023
 

Abstract

We have examined regulation of the E2F transcription factor during differentiation of muscle cells. E2F regulates many genes involved in growth control and is also the target of regulation by diverse cellular signals, including the RB family of growth suppressors (e.g., the retinoblastoma protein [RB], p107, and p130). The following aspects of E2F function and regulation during muscle differentiation were investigated: (i) protein-protein interactions, (ii) protein levels, (iii) phosphorylation of the E2F protein, and (iv) transcriptional activity. A distinct E2F complex was present in differentiated cells but not in undifferentiated cells. The p130 protein was a prominent component of the E2F complex associated with differentiation. In contrast, in undifferentiated cells, the p107 protein was the prominent component in one of three E2F complexes. In addition, use of a differentiation-defective muscle line provided genetic and biochemical evidence that quiescence and differentiation are separable events. Exclusive formation of the E2F-p130 complex did not occur in this differentiation-defective line; however, E2F complexes diagnostic of quiescence were readily apparent. Thus, sole formation of the E2F-p130 complex is a necessary event in terminal differentiation. Other changes in E2F function and regulation upon differentiation include decreased phosphorylation and increased repression by E2F. These observations suggest that the regulation of E2F function during terminal differentiation may proceed through differential interaction within the RB family and/or phosphorylation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.