147
Views
969
CrossRef citations to date
0
Altmetric
Cell Growth and Development

HER2 (neu) Signaling Increases the Rate of Hypoxia-Inducible Factor 1α (HIF-1α) Synthesis: Novel Mechanism for HIF-1-Mediated Vascular Endothelial Growth Factor Expression

, , , &
Pages 3995-4004 | Received 19 Dec 2000, Accepted 28 Mar 2001, Published online: 28 Mar 2023
 

Abstract

Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator composed of HIF-1α and HIF-1β subunits. Several dozen HIF-1 targets are known, including the gene encoding vascular endothelial growth factor (VEGF). Under hypoxic conditions, HIF-1α expression increases as a result of decreased ubiquitination and degradation. The tumor suppressors VHL (von Hippel-Lindau protein) and p53 target HIF-1α for ubiquitination such that their inactivation in tumor cells increases the half-life of HIF-1α. Increased phosphatidylinositol 3-kinase (PI3K) and AKT or decreased PTEN activity in prostate cancer cells also increases HIF-1α expression by an undefined mechanism. In breast cancer, increased activity of the HER2 (also known as neu) receptor tyrosine kinase is associated with increased tumor grade, chemotherapy resistance, and decreased patient survival. HER2 has also been implicated as an inducer of VEGF expression. Here we demonstrate that HER2 signaling induced by overexpression in mouse 3T3 cells or heregulin stimulation of human MCF-7 breast cancer cells results in increased HIF-1α protein and VEGF mRNA expression that is dependent upon activity of PI3K, AKT (also known as protein kinase B), and the downstream kinase FRAP (FKBP-rapamycin-associated protein). In contrast to other inducers of HIF-1 expression, heregulin stimulation does not affect the half-life of HIF-1α but instead stimulates HIF-1α synthesis in a rapamycin-dependent manner. The 5′-untranslated region of HIF-1α mRNA directs heregulin-inducible expression of a heterologous protein. These data provide a molecular basis for VEGF induction and tumor angiogenesis by heregulin-HER2 signaling and establish a novel mechanism for the regulation of HIF-1α expression.

ACKNOWLEDGMENTS

We are grateful to Tung Chan, Elizabeth Jaffee, and Dominic Scudiero for providing cell lines and plasmids.

This work was supported by grants to G.L.S. from the Children's Brain Tumor Foundation and the National Institutes of Health (R01-DK39869 and R01-HL55338).

E.L. and P.T. contributed equally to this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.