32
Views
57
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Loss of Annexin A7 Leads to Alterations in Frequency-Induced Shortening of Isolated Murine Cardiomyocytes

, , , , , , , , , , , & show all
Pages 4119-4128 | Received 21 Dec 2000, Accepted 06 Apr 2001, Published online: 28 Mar 2023
 

Abstract

Annexin A7 has been proposed to function in the fusion of vesicles, acting as a Ca2+ channel and as Ca2+-activated GTPase, thus inducing Ca2+/GTP-dependent secretory events. To understand the function of annexin A7, we have performed targeted disruption of the Anxa7 gene in mice. Matings between heterozygous mice produced offspring showing a normal Mendelian pattern of inheritance, indicating that the loss of annexin A7 did not interfere with viability in utero. Mice lacking annexin A7 showed no obvious phenotype and were fertile. To assay for exocytosis, insulin secretion from isolated islets of Langerhans was examined. Ca2+-induced and cyclic AMP-mediated potentiation of insulin secretion was unchanged in the absence of annexin A7, suggesting that it is not directly implicated in vesicle fusion. Ca2+ regulation studied in isolated cardiomyocytes, showed that while cells from early embryos displayed intact Ca2+homeostasis and expressed all of the components required for excitation-contraction coupling, cardiomyocytes from adultAnxa7−/− mice exhibited an altered cell shortening-frequency relationship when stimulated with high frequencies. This suggests a function for annexin A7 in electromechanical coupling, probably through Ca2+homoeostasis.

ACKNOWLEDGMENTS

We thank Stephan Selbert, Olaf Weiner, Regine Brokamp, and Jana Köhler for help during the initial phase of this project, Andrea Hufschmidt, Berthold Gassen, and Rolf Müller for skilled technical help, Volker Gerke, Mitsumori Kawaminami, Walther van Venrooij, and Carlotta Zamparelli for providing reagents, Walter Witke for the genomic library, and Michael Schleicher for discussion.

S.U. is a recipient of a Heisenberg fellowship. This work was supported by grants from the DFG and the Center for Molecular Medicine Cologne to A.A.N.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.