14
Views
45
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Increased Susceptibility to Streptozotocin-Induced β-Cell Apoptosis and Delayed Autoimmune Diabetes in Alkylpurine- DNA-N-Glycosylase-Deficient Mice

, , , , &
Pages 5605-5613 | Received 15 Dec 2000, Accepted 08 May 2001, Published online: 28 Mar 2023
 

Abstract

Type 1 diabetes is thought to occur as a result of the loss of insulin-producing pancreatic β cells by an environmentally triggered autoimmune reaction. In rodent models of diabetes, streptozotocin (STZ), a genotoxic methylating agent that is targeted to the β cells, is used to trigger the initial cell death. High single doses of STZ cause extensive β-cell necrosis, while multiple low doses induce limited apoptosis, which elicits an autoimmune reaction that eliminates the remaining cells. We now show that in mice lacking the DNA repair enzyme alkylpurine-DNA-N-glycosylase (APNG), β-cell necrosis was markedly attenuated after a single dose of STZ. This is most probably due to the reduction in the frequency of base excision repair-induced strand breaks and the consequent activation of poly(ADP-ribose) polymerase (PARP), which results in catastrophic ATP depletion and cell necrosis. Indeed, PARP activity was not induced in APNG−/− islet cells following treatment with STZ in vitro. However, 48 h after STZ treatment, there was a peak of apoptosis in the β cells of APNG−/− mice. Apoptosis was not observed in PARP-inhibited APNG+/+ mice, suggesting that apoptotic pathways are activated in the absence of significant numbers of DNA strand breaks. Interestingly, STZ-treated APNG−/− mice succumbed to diabetes 8 months after treatment, in contrast to previous work with PARP inhibitors, where a high incidence of β-cell tumors was observed. In the multiple-low-dose model, STZ induced diabetes in both APNG−/− and APNG+/+ mice; however, the initial peak of apoptosis was 2.5-fold greater in the APNG−/− mice. We conclude that APNG substrates are diabetogenic but by different mechanisms according to the status of APNG activity.

ACKNOWLEDGMENTS

At the Paterson Institute, we thank M. A. Willington for his excellent technical support during part of this work and G. Forster for carrying out the immunohistochemistry. We also thank Peter O'Connor for his critical comments on the manuscript. Electron microscopy was performed by C. Winterford of the University of Queensland Medical School.

J.W.C. acknowledges support by the Princess Alexandra Hospital Research and Development foundation and a Princess Alexandra Hospital Private Practice Scholarship. This work was supported by the Cancer Research Campaign UK (CRC).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.