23
Views
46
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Reconstitution of Human β-Globin Locus Control Region Hypersensitive Sites in the Absence of Chromatin Assembly

, , , , , & show all
Pages 2629-2640 | Received 01 Sep 2000, Accepted 24 Jan 2001, Published online: 28 Mar 2023
 

Abstract

The human β-globin genes are regulated by the locus control region (LCR), an element composed of multiple DNase I-hypersensitive sites (HS sites) located 5′ to the genes. Various functional studies indicate that the LCR confers high-level, position-independent, and copy number-dependent expression to linked globin genes in transgenic mice. However, the structural basis for LCR function is unknown. Here we show that LCR HS sites can be reconstituted in an erythroid cell-specific manner on chromatin-assembled LCR templates in vitro. Surprisingly, HS2 and HS3 are also formed with erythroid proteins in the absence of chromatin assembly, indicating that sensitivity to nucleases is not simply a consequence of nucleosome reorganization. The generation of LCR HS sites in the absence of chromatin assembly leads to the formation of S1- and KMnO4-sensitive regions in HS2 and HS3. These sites are also sensitive to S1 nuclease in erythroid cells in vivo, suggesting a distorted DNA structure in the LCR core enhancer elements. Finally, we show that RNA polymerase II initiates transcription in the HS2 and HS3 core enhancer regions in vitro. Transcription in both HS2 and HS3 proceeds in a unidirectional manner. Taken together, the data suggest that erythroid proteins interact with the core enhancer elements, distort the DNA structure, and recruit polymerase II transcription complexes. These results further our understanding of the structural basis for LCR function and provide an explanation for why the LCR core regions are so extremely sensitive to nucleases in erythroid cells.

ACKNOWLEDGMENTS

We are grateful to Gail Green for expert technical assistance. We thank Mike Kilberg and Thomas Yang (University of Florida) for critically reading the manuscript.

This work was supported by grants from the NIH (HL24415 to J.D.E.; DK 52356 to J.B.) and from the Howard Hughes Medical Institute (Research Resources Program, University of Florida, to J.B.).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.