23
Views
46
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Reconstitution of Human β-Globin Locus Control Region Hypersensitive Sites in the Absence of Chromatin Assembly

, , , , , & show all
Pages 2629-2640 | Received 01 Sep 2000, Accepted 24 Jan 2001, Published online: 28 Mar 2023

REFERENCES

  • Armstrong, J. A., and B. M. Emerson. 1996. NF-E2 disrupts chromatin structure at β-globin locus control region hypersensitive site 2 in vitro. Mol. Cell. Biol. 16:5634–5644.
  • Armstrong, J. A., J. J. Bieker, and B. M. Emerson. 1998. A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 95:93–104.
  • Ashe, H. L., J. Monks, M. Wijgerde, P. Fraser, and N. J. Proudfoot. 1997. Intergenic transcription and transinduction of the human β-globin locus. Genes Dev. 11:2494–2509.
  • Becker, P. B., and C. Wu. 1992. Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol. Cell. Biol. 12:2241–2249.
  • Bender, M., M. Bulger, J. Close, and M. Groudine. 2000. Globin gene switching and DNase I sensitivity of the endogenous β-globin locus in mice does not require the locus control region. Mol. Cell 5:387–393.
  • Bulger, M., J. H. von Doorninck, N. Saitoh, A. Telling, C. Farrell, M. A. Bender, G. Felsenfeld, R. Axel, and M. Groudine. 1999. Conservation of sequence and structure flanking the mouse and human beta-globin loci: the beta-globin genes are embedded within an array of odorant receptor genes. Proc. Natl. Acad. Sci. USA 96:5129–5134.
  • Bulger, M., and M. Groudine. 1999. Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 13:2465–2477.
  • Bungert, J., I. Kober, F. Düring, and K. H. Seifart. 1992. Transcription factor eUSF is an essential component of isolated transcription complexes on the duck histone H5 gene and it mediates the interaction of TFIID with a TATA-deficient promoter. J. Mol. Biol. 223:885–898.
  • Bungert, J., U. Davé, K.-C. Lim, K. H. Lieuw, J. A. Shavit, Q. Liu, and J. D. Engel. 1995. Synergistic regulation of human β-globin gene switching by locus control region elements HS3 and HS4. Genes Dev. 9:3083–3096.
  • Bungert, J., K. Tanimoto, S. Patel, Q. Liu, M. Fear, and J. D. Engel. 1999. Hypersensitive site 2 specifies a unique function within the human β-globin locus control region to stimulate globin gene transcription. Mol. Cell. Biol. 19:3062–3072.
  • Elnitski, L., W. Miller, and R. Hardison. 1997. Conserved E-boxes function as part of the enhancer in hypersensitive site 2 of the beta-globin locus control region: role of basic helix-loop-helix proteins. J. Biol. Chem. 272:369–378.
  • Engel, J. D., and K. Tanimoto. 2000. Looping, linking and chromatin activity: new insights into beta-globin locus regulation. Cell 100:499–502.
  • Felsenfeld, G.. 1992. Chromatin as an essential part of the transcriptional mechanism. Nature 355:219–224.
  • Forrester, W. C., S. Takegawa, T. Papayannopoulos, G. Stamatoyannopoulos, and M. Groudine. 1987. Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res. 15:10159–10177.
  • Gaensler, K. M. L., M. Burmeister, B. H. Brownstein, P. Taillon-Miller, and R. M. Myers. 1991. Physical mapping of yeast artificial chromosomes containing sequences from the human β-globin gene region. Genomics 10:976–984.
  • Gong, Q. H., J. C. McDowell, and A. Dean. 1996. Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon globin gene by 5′ hypersensitive site 2 of the β-globin locus control region. Mol. Cell. Biol. 16:6055–6064.
  • Gribnau, J, K. Diderich, S. Pruzina, R. Calzolari, and P. Fraser. 2000. Intergenic transcription and developmental remodeling of chromatin subdomains in the human β-globin locus. Mol. Cell 5:377–386.
  • Grosveld, F., G. B. van Assendelft, D. R. Greaves, and G. Kollias. 1987. Position-independent, high level expression of the human β-globin gene in transgenic mice. Cell 51:975–985.
  • Grosveld, F.. 1999. Activation by locus control regions?. Curr. Opin. Genet. Dev. 9:152–157.
  • Hardison, R., J. L. Slightom, D. L. Gumucio, M. Goodman, N. Stojanovic, and W. Miller. 1997. Locus control regions of mammalian beta-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights. Gene 20:73–94.
  • Higgs, D.. 1998. Do LCRs open chromatin domains?. Cell 95:299–302.
  • Hug, B. A., R. L. Wesselschmidt, S. Fiering, M. A. Bender, E. Epner, M. Groudine, and T. J. Ley. 1996. Analysis of mice containing a targeted deletion of β-globin locus control region hypersensitive site 3. Mol. Cell. Biol. 16:2906–2912.
  • Jackson, J. D., W. Miller, and R. C. Hardison. 1996. Sequences within and flanking hypersensitive sites 3 and 2 of the β-globin locus control region required for synergistic versus additive interaction with the ɛ-globin gene promoter. Nucleic Acids Res. 24:4327–4335.
  • Kimura, K., and T. Hirano. 1997. ATP-dependent positive supercoiling of DNA by 13S condensins: a biochemical implication for chromosome condensation. Cell 90:625–634.
  • Kong, S., D. Bohl, C. Li, and D. Tuan. 1997. Transcription of the HS2 enhancer toward a cis-linked gene is independent of the orientation, position, and distance of the enhancer relative to the gene. Mol. Cell. Biol. 17:3955–3965.
  • Krumm, A., L. B. Hickey, and M. Groudine. 1995. Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation. Genes Dev. 9:559–572.
  • Lee, J.-S., C.-H. Lee, and J. H. Chung. 1999. The β-globin promoter is important for recruitment of erythroid Krüppel-like factor to the locus control region in erythroid cells. Proc. Natl. Acad. Sci. USA 96:10051–10055.
  • Li, G., K.-C. Lim, J. D. Engel, and J. Bungert. 1998. Individual LCR hypersensitive sites cooperate to generaté an open chromatin domain spanning the human β-globin locus. Genes Cells 3:415–430.
  • Martinez-Balbàs, M. A., A. Dey, S. K. Rabindran, K. Ozato, and C. Wu. 1995. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83:29–38.
  • Merika, M., and S. H. Orkin. 1995. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Krüppel family proteins Sp1 and EKLF. Mol. Cell. Biol. 15:2437–2447.
  • Michelotti, E. F., S. Sanford, and D. Levens. 1997. Marking of active genes on mitotic chromosomes. Nature 388:895–899.
  • Milot, E., J. Strouboulis, T. Trimborn, M. Wijgerde, E. de Boer, A. Langeveld, K. Tan-un, W. Vergeer, N. Yannoutsos, F. Grosveld, and P. Fraser. 1996. Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell 87:105–114.
  • Navas, P. A., K. R. Peterson, Q. Li, E. Skarpidi, A. Rohde, S. E. Shaw, C. H. Clegg, H. Asano, and G. Stamatoyannopoulos. 1998. Developmental specificity of the interaction between the locus control region and embryonic or fetal globin genes in transgenic mice with an HS3 core deletion. Mol. Cell. Biol. 17:4188–4196.
  • O'Neill, D., K. Bornschlegel, M. Flamm, M. Castle, and A. Bank. 1991. A DNA-binding factor in adult hematopoietic cells interacts with a pyrimidine-rich domain upstream from the human delta-globin gene. Proc. Natl. Acad. Sci. USA 88:8953–8957.
  • Pomerantz, O., A. J. Goodwin, T. Joyce, and C. H. Lowrey. 1998. Conserved elements containing NF-E2 and tandem GATA binding sites are required for erythroid-specific chromatin structure reorganization within the human β-globin locus control region. Nucleic Acids Res. 26:5684–5691.
  • Reik, A., A. Telling, G. Zitnik, D. Cimbora, E. Epner, and M. Groudine. 1998. The locus control region is necessary for gene expression in the human β-globin locus but not for the maintenance of an open chromatin structure in erythroid cells. Mol. Cell. Biol. 18:5992–6000.
  • Roeder, R. G.. 1996. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21:327–335.
  • Sandaltzopoulos, R., T. Blank, and P. B. Becker. 1994. Transcriptional repression by nucleosomes but not H1 in reconstituted preblastoderm drosophila chromatin. EMBO J. 15:373–379.
  • Stamatoyannopoulos, G., and A. W. Nienhuis. 1994. Hemoglobin switching. The molecular basis of blood diseases. W. B.. G. Stamatoyannopoulos, A. W. Nienhuis, P. Majerus, and H. Varmus. 107–155. Saunders, Philadelphia, Pa
  • Stamatoyannopoulos, J. A., A. Goodwin, T. Joyce, and C. H. Lowrey. 1995. NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region. EMBO J. 14:106–116.
  • Tuan, D., W. Solomon, Q. Li, and I. M. London. 1985. The “β-like globin gene domain” in human erythroid cells. Proc. Natl. Acad. Sci. USA 82:6384–6388.
  • Wadman, I. A., H. Osada, G. G. Grutz, A. D. Agulnick, H. Westphal, A. Forster, and T. H. Rabbitts. 1997. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the Tal1, E47, GATA-1 and Ldb1/NL1 proteins. EMBO J. 16:3145–3157.
  • Wijgerde, M., F. Grosveld, and P. Fraser. 1995. Transcription complex stability and chromatin dynamics in vivo. Nature 377:209–213.
  • Wijgerde, M., J. Gribnau, T. Trimborn, B. Nuez, S. Philipsen, F. Grosveld, and P. Fraser. 1996. The role of EKLF in human β-globin gene competition. Genes Dev. 10:2894–2920.
  • Yoshida, C., F. Tokumasu, K. I. Hohmura, J. Bungert, N. Hayashi, T. Nagasawa, J. D. Engel, M. Yamamoto, K. Takeyasu, and K. Igarashi. 1999. Long range interaction of cis-DNA elements mediated by architectural transcription factor Bach1. Genes Cells 4:643–655.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.