40
Views
131
CrossRef citations to date
0
Altmetric
Cell Growth and Development

mtCLIC/CLIC4, an Organellular Chloride Channel Protein, Is Increased by DNA Damage and Participates in the Apoptotic Response to p53

, , , , , , , , , , , & show all
Pages 3610-3620 | Received 04 Oct 2001, Accepted 22 Feb 2002, Published online: 27 Mar 2023
 

Abstract

mtCLIC/CLIC4 (referred to here as mtCLIC) is a p53- and tumor necrosis factor alpha-regulated cytoplasmic and mitochondrial protein that belongs to the CLIC family of intracellular chloride channels. mtCLIC associates with the inner mitochondrial membrane. Dual regulation of mtCLIC by two stress response pathways suggested that this chloride channel protein might contribute to the cellular response to cytotoxic stimuli. DNA damage or overexpression of p53 upregulates mtCLIC and induces apoptosis. Overexpression of mtCLIC by transient transfection reduces mitochondrial membrane potential, releases cytochrome c into the cytoplasm, activates caspases, and induces apoptosis. mtCLIC is additive with Bax in inducing apoptosis without a physical association of the two proteins. Antisense mtCLIC prevents the increase in mtCLIC levels and reduces apoptosis induced by p53 but not apoptosis induced by Bax, suggesting that the two proapoptotic proteins function through independent pathways. Our studies indicate that mtCLIC, like Bax, Noxa, p53AIP1, and PUMA, participates in a stress-induced death pathway converging on mitochondria and should be considered a target for cancer therapy through genetic or pharmacologic approaches.

We thank Karen Vousden and Kevin Ryan of the National Cancer Institute for generously supplying the Saos-2 cell lines, Adam Glick for critical review of the manuscript, and Bettie Sugar and Mary Velthuis for editorial assistance.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.