18
Views
142
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Leukemia-Associated Rho Guanine Nucleotide Exchange Factor Promotes Gαq-Coupled Activation of RhoA

, &
Pages 4053-4061 | Received 16 Jan 2002, Accepted 15 Mar 2002, Published online: 27 Mar 2023
 

Abstract

Leukemia-associated Rho guanine-nucleotide exchange factor (LARG) belongs to the subfamily of Dbl homology RhoGEF proteins (including p115 RhoGEF and PDZ-RhoGEF) that possess amino-terminal regulator of G protein signaling (RGS) boxes also found within GTPase-accelerating proteins (GAPs) for heterotrimeric G protein α subunits. p115 RhoGEF stimulates the intrinsic GTP hydrolysis activity of Gα12/13 subunits and acts as an effector for G13-coupled receptors by linking receptor activation to RhoA activation. The presence of RGS box and Dbl homology domains within LARG suggests this protein may also function as a GAP toward specific Gα subunits and couple Gα activation to RhoA-mediating signaling pathways. Unlike the RGS box of p115 RhoGEF, the RGS box of LARG interacts not only with Gα12 and Gα13 but also with Gαq. In cellular coimmunoprecipitation studies, the LARG RGS box formed stable complexes with the transition state mimetic forms of Gαq, Gα12, and Gα13. Expression of the LARG RGS box diminished the transforming activity of oncogenic G protein-coupled receptors (Mas, G2A, and m1-muscarinic cholinergic) coupled to Gαq and Gα13. Activated Gαq, as well as Gα12 and Gα13, cooperated with LARG and caused synergistic activation of RhoA, suggesting that all three Gα subunits stimulate LARG-mediated activation of RhoA. Our findings suggest that the RhoA exchange factor LARG, unlike the related p115 RhoGEF and PDZ-RhoGEF proteins, can serve as an effector for Gq-coupled receptors, mediating their functional linkage to RhoA-dependent signaling pathways.

We thank members of the Der, Harden, Siderovski, and Sondek laboratories for technical assistance and helpful comments. We also thank Michael Caligiuri and Gary Reuther for the LARG plasmids.

Our research was supported by grants from the National Institutes of Health to C.J.D. (CA63071 and CA92240) and D.P.S. (GM62338), and M.A.B was supported by a Leukemia and Lymphoma Society Postdoctoral Fellowship (5394-02). D.P.S. is also a Year 2000 Scholar of the EJLB Foundation (Montreal, Canada) and recipient of the Burroughs-Wellcome New Investigator Award in the Pharmacological Sciences.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.