55
Views
171
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Recruitment of the NCoA/SRC-1/p160 Family of Transcriptional Coactivators by the Aryl Hydrocarbon Receptor/Aryl Hydrocarbon Receptor Nuclear Translocator Complex

, , , , , , , , & show all
Pages 4319-4333 | Received 08 Nov 2001, Accepted 11 Mar 2002, Published online: 27 Mar 2023
 

Abstract

The aryl hydrocarbon receptor complex heterodimeric transcription factor, comprising the basic helix-loop-helix-Per-ARNT-Sim (bHLH-PAS) domain aryl hydrocarbon receptor (AHR) and aryl hydrocarbon receptor nuclear translocator (ARNT) proteins, mediates the toxic effects of TCDD (2,3,7,8 tetrachlorodibenzo-p-dioxin). The molecular events underlying TCDD-inducible gene activation, beyond the activation of the AHRC, are poorly understood. The SRC-1/NCoA-1, NCoA-2/GRIP-1/TIF-2, and p/CIP/AIB/ACTR proteins have been shown to act as mediators of transcriptional activation. In this report, we demonstrate that SRC-1, NCoA-2, and p/CIP are capable of independently enhancing TCDD-dependent induction of a luciferase reporter gene by the AHR/ARNT dimer. Furthermore, injection of anti-SRC-1 or anti-p/CIP immunoglobulin G into mammalian cells abolishes the transcriptional activity of a TCDD-dependent reporter gene. We demonstrate by coimmunoprecipitation and by a reporter gene assay that SRC-1 and NCoA-2 but not p/CIP are capable of interacting with ARNT in vivo after transient transfection into mammalian cells, while AHR is capable of interacting with all three coactivators. We confirm the interactions of ARNT and AHR with SRC-1 with immunocytochemical techniques. Furthermore, SRC-1, NCoA-2, and p/CIP all associate with the CYP1A1 enhancer region in a TCDD-dependent fashion, as demonstrated by chromatin immunoprecipitation assays. We demonstrate by yeast two-hybrid, glutathione S-transferase pulldown, and mammalian reporter gene assays that ARNT requires its helix 2 domain but not its transactivation domain to interact with SRC-1. This indicates a novel mechanism of action for SRC-1. SRC-1 does not require its bHLH-PAS domain to interact with ARNT or AHR, but utilizes distinct domains proximal to its p300/CBP interaction domain. Taken together, these data support a role for the SRC family of transcriptional coactivators in TCDD-dependent gene regulation.

This work was supported by Public Health Service grant CA-28868 from the National Cancer Institute. T.V.B. and S.W. were supported in part by training fellowships from the University of California Toxic Substances Research and Teaching Program's Lead Campus Program.

We gratefully acknowledge the help of Irine Prastio and Rose Estrada in the preparation of the manuscript and Hongdiem Nguyen for excellent technical assistance.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.