26
Views
29
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Characterization of Mice Deficient in the Src Family Nonreceptor Tyrosine Kinase Frk/rak

, , , , &
Pages 5235-5247 | Received 12 Nov 2001, Accepted 13 Mar 2002, Published online: 27 Mar 2023
 

Abstract

Frk/rak belongs to a novel family of Src kinases with epithelial tissue-specific expression. Although developmental expression patterns and functional overexpression in vitro have associated these kinases with growth suppression and differentiation, their physiological functions remain largely unknown. We therefore generated mice carrying a null mutation in iyk, the mouse homolog of Frk/rak. We report here that frk/rak−/− mice are viable, show similar growth rates to wild-type animals, and are fertile. Furthermore, a 2-year study of health and survival did not identify differences in the incidence and spectrum of spontaneous tumors or provide evidence of hyperplasias in frk/rak−/− epithelial tissues. Histological analysis of organs failed to reveal any morphological changes in epithelial tissues that normally express high levels of Frk/rak. Ultrastructural analysis of intestinal enterocytes did not identify defects in brush border morphology or structural polarization, demonstrating that Frk/rak is dispensable for intestinal cytodifferentiation. Additionally, frk/rak-null mice do not display altered sensitivity to intestinal damage induced by ionizing radiation. cDNA microarray analysis revealed an increase in c-src expression and identified subtle changes in the expression of genes regulated by thyroid hormones. Significant decreases in the circulating levels of T3 but not T4 hormone are consistent with this observation and reminiscent of euthyroid sick syndrome, a stress-associated clinical condition.

We thank Michael Welsh for generously providing the murine Frk/rak antibodies. We thank Anastasia Sowers for technical assistance in the intestinal radiation injury studies. We also thank Anne Latour for generation of targeted ES clones. We are also extremely grateful to Beverly H. Koller for extensive discussion and critical reading of the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.