81
Views
363
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Two Molecularly Distinct G2/M Checkpoints Are Induced by Ionizing Irradiation

, , &
Pages 1049-1059 | Received 25 Jul 2001, Accepted 15 Nov 2001, Published online: 28 Mar 2023
 

Abstract

Cell cycle checkpoints are among the multiple mechanisms that eukaryotic cells possess to maintain genomic integrity and minimize tumorigenesis. Ionizing irradiation (IR) induces measurable arrests in the G1, S, and G2 phases of the mammalian cell cycle, and the ATM (ataxia telangiectasia mutated) protein plays a role in initiating checkpoint pathways in all three of these cell cycle phases. However, cells lacking ATM function exhibit both a defective G2 checkpoint and a prolonged G2 arrest after IR, suggesting the existence of different types of G2 arrest. Two molecularly distinct G2/M checkpoints were identified, and the critical importance of the choice of G2/M checkpoint assay was demonstrated. The first of these G2/M checkpoints occurs early after IR, is very transient, is ATM dependent and dose independent (between 1 and 10 Gy), and represents the failure of cells which had been in G2 at the time of irradiation to progress into mitosis. Cell cycle assays that can distinguish mitotic cells from G2 cells must be used to assess this arrest. In contrast, G2/M accumulation, typically assessed by propidium iodide staining, begins to be measurable only several hours after IR, is ATM independent, is dose dependent, and represents the accumulation of cells that had been in earlier phases of the cell cycle at the time of exposure to radiation. G2/M accumulation after IR is not affected by the early G2/M checkpoint and is enhanced in cells lacking the IR-induced S-phase checkpoint, such as those lacking Nbs1 or Brca1 function, because of a prolonged G2 arrest of cells that had been in S phase at the time of irradiation. Finally, neither the S-phase checkpoint nor the G2 checkpoints appear to affect survival following irradiation. Thus, two different G2 arrest mechanisms are present in mammalian cells, and the type of cell cycle checkpoint assay to be used in experimental investigation must be thoughtfully selected.

We gratefully acknowledge the technical assistance of Diane Woods. We thank all members of the Kastan laboratory for helpful discussions, Malgorzata Zdzienicka for providing the NBS1-LBI cell line, and David Livingston for providing the wild-type BRCA1 cDNA.

This work was supported by grants from the National Institute of Health (CA71378 and CA21765) and by the American Lebanese Syrian Associated Charities of the St. Jude Children's Research Hospital.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.