25
Views
83
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Estrogen Withdrawal-Induced NF-κB Activity and Bcl-3 Expression in Breast Cancer Cells: Roles in Growth and Hormone Independence

, , , , , & show all
Pages 6887-6900 | Received 10 Apr 2003, Accepted 10 Jun 2003, Published online: 27 Mar 2023
 

Abstract

About one-third of breast cancers express a functional estrogen (β-estradiol [E2]) receptor (ER) and are initially dependent on E2 for growth and survival but eventually progress to hormone independence. We show here that ER+, E2-independent MCF-7/LCC1 cells derived from E2-dependent MCF-7 cells contain elevated basal NF-κB activity and elevated expression of the transcriptional coactivator Bcl-3 compared with the parental MCF-7 line. LCC1 NF-κB activity consists primarily of p50 dimers, although low levels of a p65/p50 complex are also present. The ER breast cancer cell lines harbor abundant levels of both NF-κB complexes. In contrast, nuclear extracts from MCF-7 cells contain a significantly lower level of p50 and p65 than do LCC1 cells. Estrogen withdrawal increases both NF-κB DNA binding activity and expression of Bcl-3 in MCF-7 and LCC1 cells in vitro and in vivo. Tumors derived from MCF-7 cells ectopically expressing Bcl-3 remain E2 dependent but display a markedly higher tumor establishment and growth rate compared to controls. Expression of a stable form of IκBα in LCC1 cells severely reduced nuclear expression of p65 and the p65/p50 DNA binding heterodimer. Whereas LCC1 tumors in nude mice were stable or grew, LCC1(IκBα) tumors regressed after E2 withdrawal. Thus, both p50/Bcl-3- and p65/p50-associated NF-κB activities are activated early in progression and serve differential roles in growth and hormone independence, respectively. We propose that E2 withdrawal may initiate selection for hormone independence in breast cancer cells by activation of NF-κB and Bcl-3, which could then supplant E2 by providing both survival and growth signals.

ACKNOWLEDGMENTS

This work was supported in part by grant 13266 from the National Cancer Institute of Canada/Canadian Institutes for Health Research Canadian Breast Cancer Research Initiative to M.A.C.P.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.