12
Views
40
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Degradation of Transcription Repressor ZBRK1 through the Ubiquitin-Proteasome Pathway Relieves Repression of Gadd45a upon DNA Damage

&
Pages 7305-7314 | Received 19 Mar 2003, Accepted 16 Jul 2003, Published online: 27 Mar 2023
 

Abstract

Induction of gene expression in response to DNA damage is important for repairing damaged DNA for cell survival. Previously, we identified a novel zinc finger protein, ZBRK1, which contains a KRAB domain at the N terminus, eight zinc fingers at the center, and a BRCA1-binding region at the C terminus. In a BRCA1-dependent manner, ZBRK1 represses Gadd45a transcription through binding to a specific sequence in intron 3. In addition, ZBRK1-binding sequences are located at the regulatory region of many DNA damage-inducible genes, suggesting that ZBRK1 may have a role in DNA damage response. However, it is unclear how transcription repression by ZBRK1 is relieved subsequent to DNA damage. Here we report that ZBRK1 is rapidly degraded upon treatment with the DNA-damaging agents UV and methyl methanesulfonate. Specific proteasome inhibitors block DNA damage-induced degradation of ZBRK1, and the polyubiquitinated form of ZBRK1 is detectable, suggesting that the ubiquitin-proteasome pathway mediates the degradation of ZBRK1. In both BRCA1-proficient and -deficient cells, ZBRK1 is degraded with similar efficiencies independent of BRCA1 E3 ligase activity. By analysis of a series of ZBRK1 mutants, a 44-amino-acid element located between the N-terminal KRAB domain and the eight zinc fingers was found to be sufficient for the DNA damage-induced degradation of ZBRK1. Cells expressing a ZBRK1 mutant lacking the 44-amino-acid element are hypersensitive to DNA damage and are compromised for Gadd45a derepression. These results indicate that ZBRK1 is a novel target for DNA damage-induced degradation and provide a mechanistic explanation of how ZBRK1 is regulated in response to DNA damage.

ACKNOWLEDGMENTS

We thank Diane C. Jones for the preparation of antibodies, R. Baer for supplying the anti-BARD1 antibody, and R. Yew for providing the ubiquitin cDNA and HA-tagged expression plasmid. We are grateful to P.-L. Chen, H. Rao, and M. Gaczynska for helpful comments and Z. D. Sharp and N. S. Y. Ting for critical reading of the manuscript.

This work was supported by NIH grants (CA94170 and CA81020) to W.-H.L.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.