0
Views
4
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The K-fgf/hst Oncogene Induces Transformation through an Autocrine Mechanism That Requires Extracellular Stimulation of the Mitogenic Pathway

&
Pages 1138-1145 | Received 16 Aug 1990, Accepted 19 Nov 1990, Published online: 31 Mar 2023
 

Abstract

The K-fgf/hst oncogene encodes a secreted growth factor of the fibroblast growth factor (FGF) family. The ability of K-fgf-transformed cells to grow in soft agar and in serum-free medium is inhibited by anti-K-FGF neutralizing antibodies, consistent with an autocrine mechanism of transformation. The transformed properties of clones that express high levels of K-FGF are, however, only partially affected. To better define the autocrine mechanism of transformation by K-fgf and to determine whether receptor activation could occur intracellularly, we constructed two mutants of the K-fgf cDNA. Deletion of the sequences encoding the signal peptide suppressed K-fgf ability to induce foci in NIH 3T3 cells. A few morphologically transformed colonies were observed in cotransfection experiments, and they were found to express high levels of cytoplasmic K-FGF. However, their ability to grow in serum-free medium and in soft agar was inhibited by anti-K-FGF antibodies. Addition of a sequence encoding the KDEL endoplasmic reticulum and Golgi retention signal to the K-fgf cDNA led to accumulation of the growth factor in intracellular compartments. The ability of the KDEL mutant to induce foci in NIH 3T3 cells was much lower than that of the wild-type cDNA, and also in this case the transformed phenotype was reverted by anti-K-FGF antibodies. These and other findings indicate that the transformed phenotype of cells expressing a nonsecretory K-FGF is due to the extracellular activation of the receptor by the small amounts of growth factor that these cells still release. Thus, transformation by K-fgf appears to be due to an autocrine growth mechanism that requires activation of the mitogenic pathway at the cell surface.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.