3
Views
14
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The Cellular Oncogene c-myb Can Interact Synergistically with the Epstein-Barr Virus BZLF1 Transactivator in Lymphoid Cells

, , , , , , & show all
Pages 136-146 | Received 03 May 1991, Accepted 04 Oct 1991, Published online: 01 Apr 2023
 

Abstract

Regulation of replicative functions in the Epstein-Barr virus (EBV) genome is mediated through activation of a virally encoded transcription factor, Z (BZLF1). We have shown that the Z gene product, which binds to AP-1 sites as a homodimer and has sequence similarity to c-Fos, can efficiently activate the EBV early promoter, BMRF1, in certain cell types (i.e., HeLa cells) but not others (i.e., Jurkat cells). Here we demonstrate that the c-myb proto-oncogene product, which is itself a DNA-binding protein and transcriptional transactivator, can interact synergistically with Z in activating the BMRF1 promoter in Jurkat cells (a T-cell line) or Raji cells (an EBV-positive B-cell), whereas the c-myb gene product by itself has little effect. The simian virus 40 early promoter is also synergistically activated by the Z/c-myb combination. Synergistic transactivation of the BMRF1 promoter by the Z/c-myb combination appears to involve direct binding by the Z protein but not the c-myb protein. A 30-bp sequence in the BMRF1 promoter which contains a Z binding site (a consensus AP-1 site) is sufficient to transfer high-level lymphoid-specific responsiveness to the Z/c-myb combination to a heterologous promoter. That the c-myb oncogene product can interact synergistically with an EBV-encoded member of the leucine zipper protein family suggests c-myb is likely to engage in similar interactions with cellularly encoded transcription factors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.