2
Views
5
CrossRef citations to date
0
Altmetric
Gene Expression

The Proximal Promoter of the Mouse Arrestin Gene Directs Gene Expression in Photoreceptor Cells and Contains an Evolutionarily Conserved Retinal Factor-Binding Site

, , &
Pages 4400-4408 | Received 11 Feb 1993, Accepted 26 Apr 1993, Published online: 31 Mar 2023
 

Abstract

Regulatory sequences and nuclear factors governing tissue-restricted expression of the mouse arrestin gene were investigated. The results showed that while proximal promoter sequence positions -38 to +304 are sufficient to direct low levels of retina-specific gene expression, sequences extending upstream to position -209 support higher levels of expression in the retina, as well as detectable expression in the lens, pineal gland, and brain. Within the interval between positions -209 and -38, a broadly expressed nuclear factor, Bd, binds to sequences centered between positions -205 and -185, a region which contains two direct repeats of the hexamer, TGACCT. The proximal promoter binds three apparently retina-specific nuclear factors, Bp1, Bp2, and Bp3, through overlapping sequences centered between positions -25 and -15. Bp1 and Bp3 also recognize a closely related sequence found in the promoter regions of several other vertebrate photoreceptor-specific genes. Moreover, the consensus binding site for Bp1, designated PCE I, is identical to RCS I, an element known to play a critical role eliciting photoreceptor-specific gene expression in Drosophila melanogaster. The results suggest that PCE I and RCS I are functionally as well as structurally similar and that, despite marked differences in the fly and vertebrate visual systems, the transcriptional machinery involved in photoreceptor-specific gene expression has been strongly evolutionarily conserved.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.