110
Views
7
CrossRef citations to date
0
Altmetric
Full papers

Whole Body Motion Noise Cancellation of a Robot for Improved Automatic Speech Recognition

, , , &
Pages 1405-1426 | Published online: 02 Apr 2012
 

Abstract

The motors of a robot produce ego-motion noise that degrades the quality of recorded sounds. This paper describes an architecture that enhances the capability of a robot to perform automatic speech recognition (ASR) even as the entire body of the robot moves. The architecture consists of three blocks: (i) a multichannel noise reduction block, consisting of microphone-array-based sound localization, geometric source separation and post-filtering, (ii) a single-channel template subtraction block and (iii) an ASR block. As the first step of our analysis strategy, we divided the whole-body motion noise problem into three subdomains of arm, leg and head motion noise, according to their intensity levels and spatial location. Subsequently, by following a synthesis-by-analysis approach, we determined the best method for suppressing each type of ego-motion noise. Finally, we proposed to utilize a control module in our ASR framework; this module was designed to make decisions based on instantaneously detected motions, allowing it to switch to the most appropriate method for the current type of noise. This proposed system resulted in improvements of up to 50 points in word correct rates compared with results obtained by single microphone recognition of arm, leg and head motions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.