75
Views
2
CrossRef citations to date
0
Altmetric
Full papers

Multi-legged multi-roped walking and climbing robots: online static equilibrium analysis

Pages 165-180 | Published online: 02 Apr 2012
 

Abstract

The paper proposes a fast method to solve the equilibrium problem of statically indeterminate walking and climbing robots with quasi-static locomotion and whatever number of legs and ropes connecting the robot frame to the ground. The configuration is instantaneously assigned. Legs and rope winches are imagined blocked. Due to the number of legs and ropes, the robot is a statically indeterminate system under unilateral constraints: in order to solve the system of the equilibrium equations, it is necessary to take into account the compliance of the robot and of the terrain. This can be done by non-linear analysis of a finite element model of the robot, including the ground characteristics, but this is very time consuming. The method presented in the paper seems an effective alternative. To assess its performances, the method is applied to the heavy-duty climbing robot Roboclimber with satisfactory results. The running time is low enough to allow the application for the online gait planning and for real-time control of the robot. The method will be soon used as decision support for online gait planning within the remote control system of Roboclimber.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.