11
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Neutronic and Safety Aspects of a Gas-Cooled Subcritical Core for Minor Actinide Transmutation

&
Pages 41-51 | Published online: 10 Apr 2017
 

Abstract

We have designed a gas-cooled accelerator-driven system dedicated to transmutation of minor actinides. Thanks to the excellent neutron economy of the uranium-free fuel employed, the pin pitch to diameter ratio (P/D) could be increased to 1.8. The increased coolant fraction allows for decay heat removal at ambient pressure. The large coolant fraction further results in a low pressure loss—26 kPa over the core, 35 kPa in total. Thanks to the large P/D, the elevation of the heat exchanger necessary to remove decay heat by natural circulation is just more than 1 m. The absence of uranium in conjunction with the presence of 35% (heavy atom) americium in the fuel results in a low effective delayed neutron fraction and a vanishing Doppler feedback, making subcritical operation mandatory.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.