74
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Allylic structures in cancer drugs and body metabolites that control cell life and death

, PhD
Pages 809-821 | Published online: 26 Jul 2007
 

Abstract

This review presents data supporting the hypothesis that the anticancer activity of ceramide and many antineoplastic drugs is due to a 3-carbon allylic moiety (–C = C–C–) containing oxygen or nitrogen. The polar atom appears as an alcohol, ether, ester, amide, ketone, amine or imino group. Some drugs lack the allylic moiety, but metabolic oxidation or oxygenation in patients introduces the moiety. The allylic compounds kill cancer cells by: i) interference with ubiquinone in mitochondria, generating reactive oxygen species (ROS); ii) activation of enzymatic hydrolysis of sphingomyelin by the ROS, forming ceramide, which initiates mitochondrial destruction and apoptosis; iii) activation of the phosphorylation and dephosphorylation of proteins involved in apoptosis by ceramide and some allylic drugs and iv) activation of certain proteases, such as cathepsin D, by ceramide.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.