217
Views
19
CrossRef citations to date
0
Altmetric
Review

Synapse proteomics: current status and quantitative applications

&
Pages 353-360 | Published online: 09 Jan 2014
 

Abstract

Chemical synapses are key organelles for neurotransmission. The coordinated actions of protein networks in diverse synaptic subdomains drive the sequential molecular events of transmitter release from the presynaptic bouton, activation of transmitter receptors located in the postsynaptic density and the changes of postsynaptic potential. Plastic change of synaptic efficacy is thought to be caused by the alteration of protein constituents and their interaction in the synapse. As a first step toward the understanding of the organization of synapse, several proteomics studies have been carried out to profile the protein constituents and the post-translational modifications in various rodent excitatory chemical synaptic subdomains, including postsynaptic density, synaptic vesicle and the synaptic phosphoproteome. Quantitative proteomics have been applied to examine the changes of synaptic proteins during brain development, in knockout mice model developed for studies of synapse physiology and in rodent models of brain disorders. These analyses generate testable hypotheses of synapse function and regulation both in health and disease.

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.