217
Views
19
CrossRef citations to date
0
Altmetric
Review

Synapse proteomics: current status and quantitative applications

&
Pages 353-360 | Published online: 09 Jan 2014

References

  • Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron44(1), 5–21 (2004).
  • Kennedy MJ, Ehlers MD. Organelles and trafficking machinery for postsynaptic plasticity. Annu. Rev. Neurosci.29, 325–362 (2006).
  • Fonseca R, Vabulas RM, Hartl FU, Bonhoeffer T, Nagerl UV. A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron52(2), 239–245 (2006).
  • Robinson TE, Kolb B. Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse33(2), 160–162 (1999).
  • McCullumsmith RE, Clinton SM, Meador-Woodruff JH. Schizophrenia as a disorder of neuroplasticity. Int. Rev. Neurobiol.59, 19–45 (2004).
  • Bagni C, Greenough WT. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat. Rev. Neurosci.6(5), 376–387 (2005).
  • Carlin RK, Grab DJ, Cohen RS, Siekevitz P. Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J. Cell Biol.86(3), 831–345 (1980).
  • Dunkley PR, Heath JW, Harrison SM, Jarvie PE, Glenfield PJ, Rostas JA. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res.441(1–2), 59–71 (1988).
  • Dosemeci A, Makusky AJ, Jankowska-Stephens E, Yang X, Slotta DJ, Markey SP. Composition of the synaptic PSD-95 complex. Mol. Cell. Proteomics6(10), 1749–1760 (2007).
  • Takamori S, Holt M, Stenius K et al. Molecular anatomy of a trafficking organelle. Cell127(4), 831–846 (2006).
  • Burre J, Beckhaus T, Schagger H et al. Analysis of the synaptic vesicle proteome using three gel-based protein separation techniques. Proteomics6(23), 6250–6262 (2006).
  • Morciano M, Burre J, Corvey C, Karas M, Zimmermann H, Volknandt W. Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J. Neurochem.95(6), 1732–1745 (2005).
  • Li KW, Hornshaw MP, Van Der Schors RC et al. Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J. Biol. Chem.279(2), 987–1002 (2004).
  • Walikonis RS, Jensen ON, Mann M, Provance DW Jr, Mercer JA, Kennedy MB. Identification of proteins in the postsynaptic density fraction by mass spectrometry. J. Neurosci.20(11), 4069–4080 (2000).
  • Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J. Biol. Chem.279(20), 21003–21011 (2004).
  • Collins MO, Husi H, Yu L et al. Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J. Neurochem.97(Suppl. 1), 16–23 (2006).
  • Li KW, Hornshaw MP, van Minnen J, Smalla KH, Gundelfinger ED, Smit AB. Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins. J. Proteome Res.4(3), 725–733 (2005).
  • Yoshimura Y, Yamauchi Y, Shinkawa T et al. Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography-tandem mass spectrometry. J. Neurochem.88(3), 759–768 (2004).
  • Munton RP, Tweedie-Cullen R, Livingstone-Zatchej M et al. Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations. Mol. Cell. Proteomics6(2), 283–293 (2007).
  • Trinidad JC, Specht CG, Thalhammer A, Schoepfer R, Burlingame AL. Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol. Cell. Proteomics5(5), 914–922 (2006).
  • Collins MO, Yu L, Coba MP et al. Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem.280(7), 5972–5982 (2005).
  • Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Methods4(3), 231–237 (2007).
  • Thingholm TE, Jensen ON, Robinson PJ, Larsen MR. SIMAC – a phosphoproteomic strategy for the rapid separation of mono-phosphorylated from multiply phosphorylated peptides. Mol. Cell. Proteomics PMID: 18039691 (2007) (Epub ahead of print).
  • Rivers J, Simpson DM, Robertson DH, Gaskell SJ, Beynon RJ. Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol. Cell. Proteomics6(8), 1416–1427 (2007).
  • Olsen JV, Nielsen PA, Andersen JR, Mann M, Wisniewski JR. Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels. Brain Res.1134(1), 95–106 (2007).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3(12), 1154–1169 (2004).
  • Schmidt A, Kellermann J, Lottspeich F. A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics5(1), 4–15 (2005).
  • Cheng D, Hoogenraad CC, Rush J et al. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol. Cell. Proteomics5(6), 1158–1170 (2006).
  • Ishihama Y, Sato T, Tabata T et al. Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat. Biotechnol.23(5), 617–621 (2005).
  • Brun V, Dupuis A, Adrait A et al. Isotope-labeled protein standards: towards absolute quantitative proteomics. Mol. Cell. Proteomics6, 2139–2149 (2007).
  • Pratt JM, Simpson DM, Doherty MK, Rivers J, Gaskell SJ, Beynon RJ. Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat. Protoc.1(2), 1029–1043 (2006).
  • Cutillas PR, Vanhaesebroeck B. Quantitative profile of five murine core proteomes using label-free functional proteomics. Mol. Cell. Proteomics6(9), 1560–1573 (2007).
  • Le Bihan T, Goh T, Stewart II et al. Differential analysis of membrane proteins in mouse fore- and hindbrain using a label-free approach. J. Proteome Res.5(10), 2701–2710 (2006).
  • Jordan BA, Fernholz BD, Boussac M et al. Identification and verification of novel rodent postsynaptic density proteins. Mol. Cell. Proteomics3(9), 857–871 (2004).
  • Burre J, Volknandt W. The synaptic vesicle proteome. J. Neurochem.101(6), 1448–1462 (2007).
  • Burre J, Beckhaus T, Corvey C, Karas M, Zimmermann H, Volknandt W. Synaptic vesicle proteins under conditions of rest and activation: analysis by 2-D difference gel electrophoresis. Electrophoresis27(17), 3488–3496 (2006).
  • Salazar G, Love R, Styers ML et al. AP-3-dependent mechanisms control the targeting of a chloride channel (ClC-3) in neuronal and non-neuronal cells. J. Biol. Chem.279(24), 25430–25439 (2004).
  • Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci.3(7), 661–669 (2000).
  • Nakagawa T, Cheng Y, Ramm E, Sheng M, Walz T. Structure and different conformational states of native AMPA receptor complexes. Nature433(7025), 545–549 (2005).
  • Kabbani N, Woll MP, Levenson R, Lindstrom JM, Changeux JP. Intracellular complexes of the b2 subunit of the nicotinic acetylcholine receptor in brain identified by proteomics. Proc. Natl Acad. Sci. USA104(51), 20570–20575 (2007).
  • Jordan BA, Fernholz BD, Khatri L, Ziff EB. Activity-dependent AIDA-1 nuclear signaling regulates nucleolar numbers and protein synthesis in neurons. Nat. Neurosci.10(4), 427–435 (2007).
  • Kim MJ, Futai K, Jo J, Hayashi Y, Cho K, Sheng M. Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron56(3), 488–502 (2007).
  • Tada T, Simonetta A, Batterton M, Kinoshita M, Edbauer D, Sheng M. Role of septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr. Biol.17(20), 1752–1758 (2007).
  • Li KW. Proteomics of synapse. Anal. Bioanal. Chem.387(1), 25–28 (2007).
  • Li KW, Smit AB. Proteomics of brain synapses and molecular dissection of synaptic subdomains. Proteomics Clin. App.1(11), 1476–1484 (2007).
  • Li KW, Miller S, Klychnikov O et al. Quantitative proteomics and protein network analysis of hippocampal synapses of CaMKIIalpha mutant mice. J. Proteome Res.6(8), 3127–3133 (2007).
  • Venable JD, Wohlschlegel J, McClatchy DB, Park SK, Yates JR III. Relative quantification of stable isotope labeled peptides using a linear ion trap-Orbitrap hybrid mass spectrometer. Anal. Chem.79(8), 3056–3064 (2007).
  • Raff MC, Whitmore AV, Finn JT. Axonal self-destruction and neurodegeneration. Science296(5569), 868–8671 (2002).
  • Wishart TM, Paterson JM, Short DM et al. Differential proteomics analysis of synaptic proteins identifies potential cellular targets and protein mediators of synaptic neuroprotection conferred by the slow Wallerian degeneration (Wlds) gene. Mol. Cell. Proteomics6(8), 1318–1330 (2007).
  • Gillardon F, Rist W, Kussmaul L et al. Proteomic and functional alterations in brain mitochondria from Tg2576 mice occur before amyloid plaque deposition. Proteomics7(4), 605–616 (2007).
  • Boyd-Kimball D, Castegna A, Sultana R et al. Proteomic identification of proteins oxidized by Ab(1-42) in synaptosomes: implications for Alzheimer’s disease. Brain Res.1044(2), 206–215 (2005).
  • Mello CF, Sultana R, Piroddi M et al. Acrolein induces selective protein carbonylation in synaptosomes. Neuroscience147(3), 674–679 (2007).
  • Li KW, Jimenez CR, van der Schors RC, Hornshaw MP, Schoffelmeer AN, Smit AB. Intermittent administration of morphine alters protein expression in rat nucleus accumbens. Proteomics6(6), 2003–2008 (2006).
  • Prokai L, Zharikova AD, Stevens SM Jr. Effect of chronic morphine exposure on the synaptic plasma-membrane subproteome of rats: a quantitative protein profiling study based on isotope-coded affinity tags and liquid chromatography/mass spectrometry. J. Mass Spectrom.40(2), 169–175 (2005).
  • Moron JA, Abul-Husn NS, Rozenfeld R, Dolios G, Wang R, Devi LA. Morphine administration alters the profile of hippocampal postsynaptic density-associated proteins: a proteomics study focusing on endocytic proteins. Mol. Cell. Proteomics6(1), 29–42 (2007).
  • Yang L, Sun ZS, Zhu YP. Proteomic analysis of rat prefrontal cortex in three phases of morphine-induced conditioned place preference. J. Proteome Res.6(6), 2239–2247 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.