49
Views
0
CrossRef citations to date
0
Altmetric
Review

Polymorphisms Affecting Mirna Regulation: A New Level of Genetic Variation Affecting Disorders and Diseases of the Human Cns

&
Pages 411-431 | Published online: 05 Jul 2013
 

Abstract

The recognition of people and/or populations at a high risk for the development of various types of neurological disorders and diseases is not only key to improved screening programs and earlier detection, but it also provides hope for appropriate treatment and care. Genetic alterations that change gene-expression levels have long been investigated for association with the development of pathological neurological conditions. Gene regulation by miRNAs is a relatively new area of study, and published evidence suggests that alterations in this process may be associated with increased disease risk. Here, the authors review the current data for association between single nucleotide polymorphisms (SNPs) and miRNA-mediated gene regulation (miR-SNPs) in human neuropsychiatric and neurodegenerative diseases. Additionally, we present an approach to detect and identify functional miR-SNPs for the purpose of carrying out large-scale genetic association studies. The growing body of literature suggests that miR-SNPs are emerging as a powerful tool, both to study the pathobiology of diseases, as well as aiding in its diagnosis and prognosis.

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.