346
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of Particle Size and Surface Modification on Gold Nanoparticle Penetration Into Human Placental Microtissues

, , , , , , , , , , & show all
Pages 1119-1133 | Received 18 Dec 2016, Accepted 10 Mar 2017, Published online: 27 Apr 2017
 

Abstract

Aim: Nanoparticle-based drug carriers hold great promise for the development of targeted therapies in pregnancy with reduced off-target effects. Here, we performed a mechanistic in vitro study on placental localization and penetration of gold nanoparticles (AuNPs) in dependence of particle size and surface modification. Materials & methods: AuNP uptake and penetration in human placental coculture microtissues was assessed by inductively coupled plasma-mass spectrometry, transmission electron microscopy and laser ablation-inductively coupled plasma-mass spectrometry. Results: Higher uptake and deeper penetration was observed for smaller (3–4 nm) or sodium carboxylate-modified AuNPs than for larger (13–14 nm) or PEGylate AuNPs, which barely passed the trophoblast barrier layer. Conclusion: It is possible to steer placental uptake and penetration of AuNPs by tailoring their properties, which is a prerequisite for the development of targeted therapies in pregnancy.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at:www.tandfonline.com/doi/full/10.2217/epi-2016-0184

Acknowledgements

The authors thank Bengt Fadeel and Audrey Gallud, Karolinska Institutet, for endotoxin testing of all nanoparticles used in this study.

Financial & competing interests disclosure

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 309329 (NANOSOLUTIONS). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.