346
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of Particle Size and Surface Modification on Gold Nanoparticle Penetration Into Human Placental Microtissues

, , , , , , , , , , & show all
Pages 1119-1133 | Received 18 Dec 2016, Accepted 10 Mar 2017, Published online: 27 Apr 2017

References

  • Etheridge ML Campbell SA Erdman AG Haynes CL Wolf SM Mccullough J . The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine9 (1), 1 – 14 (2013).
  • Dobrovolskaia MA Aggarwal P Hall JB Mcneil SE . Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm.5 (4), 487 – 495 (2008).
  • Pelaz B Del Pino P Maffre P et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano9 (7), 6996 – 7008 (2015).
  • Ryan SM Brayden DJ . Progress in the delivery of nanoparticle constructs: towards clinical translation. Curr. Opin. Pharmacol.18, 120 – 128 (2014).
  • Tinkle S Mcneil SE Muhlebach S et al. Nanomedicines: addressing the scientific and regulatory gap. Ann. NY Acad. Sci.1313, 35 – 56 (2014).
  • Keelan JA Leong JW Ho D Iyer KS . Therapeutic and safety considerations of nanoparticle-mediated drug delivery in pregnancy. Nanomedicine10 (14), 2229 – 2247 (2015).
  • Tomson T Battino D Bonizzoni E et al. Dose-dependent risk of malformations with antiepileptic drugs: an analysis of data from the EURAP epilepsy and pregnancy registry. Lancet Neurol.10 (7), 609 – 617 (2011).
  • Veiby G Daltveit AK Schjolberg S et al. Exposure to antiepileptic drugs in utero and child development: a prospective population-based study. Epilepsia54 (8), 1462 – 1472 (2013).
  • Cindrova-Davies T . The therapeutic potential of antioxidants, ER chaperones, NO and H2S donors, and statins for treatment of preeclampsia. Front. Pharmacol.5, 119 (2014).
  • Rytting E Ahmed MS . Fetal drug therapy. In : Clinical Pharmacology During Pregnancy.MattisonD ( Ed.). Elsevier, Amsterdam, The Netherlands (2013).
  • Burd I Zhang F Dada T et al. Fetal uptake of intra-amniotically delivered dendrimers in a mouse model of intrauterine inflammation and preterm birth. Nanomedicine10 (6), 1343 – 1351 (2014).
  • King A Ndifon C Lui S et al. Tumor-homing peptides as tools for targeted delivery of payloads to the placenta. Sci. Adv.2 (5), e1600349 (2016).
  • Malassine A Frendo JL Evain-Brion D . A comparison of placental development and endocrine functions between the human and mouse model. Hum. Reprod. Update9 (6), 531 – 539 (2003).
  • Hutson JR Garcia-Bournissen F Davis A Koren G . The human placental perfusion model: a systematic review and development of a model to predict in vivo transfer of therapeutic drugs. Clin. Pharmacol. Ther.90 (1), 67 – 76 (2011).
  • Grafmueller S Manser P Krug HF Wick P Von Mandach U . Determination of the transport rate of xenobiotics and nanomaterials across the placenta using the ex vivo human placental perfusion model. J. Vis. Exp. (76), e50401 (2013).
  • Menjoge AR Navath RS Asad A et al. Transport and biodistribution of dendrimers across human fetal membranes: implications for intravaginal administration of dendrimer-drug conjugates. Biomaterials31 (18), 5007 – 5021 (2010).
  • Kaitu'u-Lino TJ Pattison S Ye L et al. Targeted nanoparticle delivery of doxorubicin into placental tissues to treat ectopic pregnancies. Endocrinology154 (2), 911 – 919 (2013).
  • Lopalco A Ali H Denora N Rytting E . Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood-brain barrier and human placental trophoblast. Int. J. Nanomed.10, 1985 – 1996 (2015).
  • Carreira SC Walker L Paul K Saunders M . The toxicity, transport and uptake of nanoparticles in the in vitro BeWo b30 placental cell barrier model used within NanoTEST. Nanotoxicology9, 66 – 78 (2015).
  • Cartwright L Poulsen MS Nielsen HM et al. In vitro placental model optimization for nanoparticle transport studies. Int. J. Nanomed.7, 497 – 510 (2012).
  • Ali H Kalashnikova I White MA Sherman M Rytting E . Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int. J. Pharm.454 (1), 149 – 157 (2013).
  • Albekairi NA Al-Enazy S Ali S Rytting E . Transport of digoxin-loaded polymeric nanoparticles across BeWo cells, an in vitro model of human placental trophoblast. Ther. Deliv.6 (12), 1325 – 1334 (2015).
  • Muoth C Aengenheister L Kucki M Wick P Buerki-Thurnherr T . Nanoparticle transport across the placental barrier: pushing the field forward!Nanomedicine11 (8), 941 – 957 (2016).
  • Muoth C Wichser A Monopoli M et al. A 3D co-culture microtissue model of the human placenta for nanotoxicity assessment. Nanoscale8 (39), 17322 – 17332 (2016).
  • Gude NM Roberts CT Kalionis B King RG . Growth and function of the normal human placenta. Thromb. Res.114 (5–6), 397 – 407 (2004).
  • NanoSolutions . www.nanosolutions.eu
  • Niehaus R Sperling M Karst U . Study on aerosol characteristics and fractionation effects of organic standard materials for bioimaging by means of LA-ICP-MS. J. Anal. Atomic Spectr.30 (10), 2056 – 2065 (2015).
  • Reynolds ES . The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J. Cell. Biol.17, 208 – 212 (1963).
  • Zheng M Li Z Huang X . Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules. Langmuir20 (10), 4226 – 4235 (2004).
  • Shi W Sahoo Y Swihart MT . Gold nanoparticles surface-terminated with bifunctional ligands. Colloids Surf.246 (1), 109 – 113 (2004).
  • Ghann WE Aras O Fleiter T Daniel MC . Syntheses and characterization of lisinopril-coated gold nanoparticles as highly stable targeted CT contrast agents in cardiovascular diseases. Langmuir28 (28), 10398 – 10408 (2012).
  • Chen C Daniel MC Quinkert ZT et al. Nanoparticle-templated assembly of viral protein cages. Nano. Lett.6 (4), 611 – 615 (2006).
  • Friedman SJ Skehan P . Morphological differentiation of human choriocarcinoma cells induced by methotrexate. Cancer Res.39 (6 Pt 1), 1960 – 1967 (1979).
  • Harding C Heuser J Stahl P . Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol.97 (2), 329 – 339 (1983).
  • Li H Van Ravenzwaay B Rietjens IM Louisse J . Assessment of an in vitro transport model using BeWo b30 cells to predict placental transfer of compounds. Arch. Toxicol.87 (9), 1661 – 1669 (2013).
  • Dreaden EC Alkilany AM Huang X Murphy CJ El-Sayed MA . The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev.41 (7), 2740 – 2779 (2012).
  • Boisselier E Astruc D . Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev.38 (6), 1759 – 1782 (2009).
  • Pozzi D Colapicchioni V Caracciolo G et al. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale6 (5), 2782 – 2792 (2014).
  • Goodman CM Mccusker CD Yilmaz T Rotello VM . Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem.15 (4), 897 – 900 (2004).
  • Becker JS Matusch A Wu B . Bioimaging mass spectrometry of trace elements – recent advance and applications of LA-ICP-MS: a review. Anal. Chim. Acta835, 1 – 18 (2014).
  • Hare D Austin C Doble P . Quantification strategies for elemental imaging of biological samples using laser ablation-inductively coupled plasma-mass spectrometry. Analyst137 (7), 1527 – 1537 (2012).
  • Reifschneider O Wehe CA Diebold K Becker C Sperling M Karst U . Elemental bioimaging of haematoxylin and eosin-stained tissues by laser ablation ICP-MS. J. Anal. Atomic Spectr.28 (7), 989 – 993 (2013).
  • Pozebon D Scheffler GL Dressler VL Nunes MA . Review of the applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to the analysis of biological samples. J. Anal. Atomic Spectr.29 (12), 2204 – 2228 (2014).
  • Buchner T Drescher D Traub H et al. Relating surface-enhanced Raman scattering signals of cells to gold nanoparticle aggregation as determined by LA-ICP-MS micromapping. Anal. Bioanal. Chem.406 (27), 7003 – 7014 (2014).
  • Drescher D Giesen C Traub H Panne U Kneipp J Jakubowski N . Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal. Chem.84 (22), 9684 – 9688 (2012).
  • Bohme S Stark HJ Meissner T et al. Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods. J. Nanopart. Res.16 (9), 2592 (2014).
  • Wang M Zheng LN Wang B et al. Quantitative analysis of gold nanoparticles in single cells by laser ablation inductively coupled plasma-mass spectrometry. Anal. Chem.86 (20), 10252 – 10256 (2014).
  • Semmler-Behnke M Lipka J Wenk A et al. Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Part. Fibre. Toxicol.11, 33 (2014).
  • Rattanapinyopituk K Shimada A Morita T et al. Demonstration of the clathrin- and caveolin-mediated endocytosis at the maternal-fetal barrier in mouse placenta after intravenous administration of gold nanoparticles. J. Vet. Med. Sci.76 (3), 377 – 387 (2014).
  • Yang H Sun CJ Fan ZL et al. Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Sci. Rep.2, 847 (2012).
  • De Gennes P . Polymers at an interface; a simplified view. Adv. Colloid Interface Sci.27 (3–4), 189 – 209 (1987).
  • Kenworthy AK Hristova K Needham D Mcintosh TJ . Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly(ethylene glycol). Biophys. J.68 (5), 1921 – 1936 (1995).
  • Myllynen PK Loughran MJ Howard CV Sormunen R Walsh AA Vahakangas KH . Kinetics of gold nanoparticles in the human placenta. Reprod. Toxicol.26 (2), 130 – 137 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.