353
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of Post-fire Soil Erosion Risk in Fire-Affected Watersheds Using Remote Sensing and GIS

, , &
Pages 388-410 | Published online: 15 May 2013
 

Abstract

Soil erosion is a prominent cause of land degradation and desertification in Mediterranean countries. The detrimental effects of soil erosion are exemplified in climate (in particular climate change), topography, human activities, and natural disasters. Forest fires, which are an integral part of Mediterranean ecosystems, are responsible for the destruction of above-and below-ground vegetation that protects against soil erosion. Under this perspective, the estimation of potential soil erosion, especially after fire events, is critical for identifying watersheds that require management to prevent sediment loss, flooding, and increased ecosystem degradation. The objective of this study was to model the potential post-fire soil erosion risk following a large and intensive wildland fire, in order to prioritize protection and management actions at the watershed level in a Mediterranean landscape. Burn severity and preand post-fire land cover/uses were mapped using an ASTER image acquired two years before the fire, air photos acquired shortly after the fire, and a Landsat TM image acquired within one month after-fire. We estimated pre-and post-fire sediment loss using an integrated GIS-based approach, and additionally we analyzed landscape erosion patterns. The overall accuracy of the severity map reached 83%. Severe and heavy potential erosion classes covered approximately 90% of the total area following the fire, compared to 55% before. The fire had a profound effect on the spatial erosion pattern by altering the distribution of the potential erosion classes in 21 out of 24 watersheds, and seven watersheds were identified as being the most vulnerable to post-fire soil erosion. The spatial pattern of the erosion process is important because landscape cover heterogeneity induced especially by fire is a dominant factor controlling runoff generation and erosion rate, and should be considered in post-fire erosion risk assessment.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.