155
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Relationship Between Activated Astrocytes and Hypoxic Cerebral Tissue in a Rat Model of Cerebral Ischemia/Reperfusion

, , , , , & show all
Pages 1-7 | Received 15 Aug 2010, Published online: 20 Jan 2011
 

Abstract

Following cerebral infarction, hypoxic tissues remains in the ischemic cortex for long periods of time. Glial fibrillary acidic protein (GFAP) is a specific marker of astrocytes, which is thought to be essential for neuronal survival. We aimed to clarify the relationship between hypoxic tissue and astrocytes following cerebral infarction. Rats with middle cerebral artery occlusion were randomly divided into a 1.5-hour ischemia-reperfusion(1.5-hour IR) group and a permanent ischemia (PI) group. Hypoxic tissue and GFAP fluorescence intensity in the ischemic cortex were observed postoperatively on days 1, 3, 7, and 14. Results showed that hypoxic tissue was present from day 1 to 14 in the 1.5-hour IR group and on days 1 and 3 in the PI group. The GFAP fluorescence intensity in the 1.5-hour IR group was stronger than that in the PI group at the same time point of observation. Over time, GFAP expression increased and peaked at 7 days in each group, followed by a decrease in signal. In hypoxic tissue, the GFAP fluorescence intensity was stronger than that in the surrounding tissue at all observation time points. These data indicate that astrocytes were strongly activated in hypoxic tissue induced by temporary ischemia followed by reperfusion. The activation of astrocytes may partially contribute to the survival and repair of hypoxic tissue following brain ischemia.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.