Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 43, 2013 - Issue 11
348
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Elucidation of the biochemical basis for a clinical drug–drug interaction between atorvastatin and 5-(N-(4-((4-ethylbenzyl)thio)phenyl)sulfamoyl)-2-methyl benzoic acid (CP-778 875), a subtype selective agonist of the peroxisome proliferator-activated receptor alpha

, , , , , , , , , , , & show all
Pages 963-972 | Received 25 Feb 2013, Accepted 26 Mar 2013, Published online: 30 Apr 2013
 

Abstract

1. 5-(N-(4-((4-ethylbenzyl)thio)phenyl)sulfamoyl)-2-methyl benzoic acid (CP-778 875), an agonist of the peroxisome proliferator-activated receptor alpha, has been evaluated in the clinic to treat dyslipidemia and type 2 diabetes mellitus. Herein, we investigate the effect of CP-778 875 on the pharmacokinetics of atorvastatin acid and its metabolites in humans.

2. The study incorporated a fixed-sequence design conducted in two groups. Group A was designed to estimate the effects of multiple doses of CP-778 875 on the single dose pharmacokinetics of atorvastatin. Subjects in group A (n = 26) received atorvastatin (40 mg) on days 1 and 9 and CP-778 875 (1.0 mg QD) on days 5–12. Group B was designed to examine the effects of multiple doses of atorvastatin on the single dose pharmacokinetics of CP-778 875. Subjects in group B (n = 29) received CP-778 875 (0.3 mg) on days 1 and 9 and atorvastatin (40 mg QD) on days 5–12.

3. Mean maximum serum concentration (Cmax) and area under the curve of atorvastatin were increased by 45% and 20%, respectively, upon co-administration with CP-778 875. Statistically significant increases in the systemic exposure of ortho- and para-hydroxyatorvastatin were also observed upon concomitant dosing with CP-778 875. CP-778 875 pharmacokinetics, however, were not impacted upon concomitant dosing with atorvastatin.

4. Inhibition of organic anion transporting polypeptide 1B1 by CP-778 875 (IC50 = 2.14 ±0.40 μM) could be the dominant cause of the pharmacokinetic interaction as CP-778 875 did not exhibit significant inhibition of cytochrome P450 3A4/3A5, multidrug resistant protein 1 or breast cancer resistant protein, which are also involved in the hepatobiliary disposition of atorvastatin.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.