814
Views
19
CrossRef citations to date
0
Altmetric
Research Articles

Heat shock protein expression and temperature distribution in prostate tumours treated with laser irradiation and nanoshells

, , , &
Pages 791-801 | Received 18 May 2011, Accepted 20 Jul 2011, Published online: 18 Nov 2011
 

Abstract

Purpose: Sub-lethal temperature elevations in the tumour incurred during laser cancer therapy can induce heat shock protein (HSP) expression leading to enhanced tumour survival and recurrence. Nanoshells utilised in combination with laser therapy can potentially enable selective heat deposition, greater thermal injury, and diminished HSP expression in the tumour. The study objective was to measure the distribution of temperature and HSP expression in prostate tumours in response to laser therapy alone or with nanoshells to determine if these combinatorial therapies can minimise HSP expression.

Methods: PC3 cells were inoculated in the backs of CB17-Prkd c SCID/J mice and treated with external laser irradiation (wavelength of 810 nm, irradiance of 5 W/cm2, spot size of 5 mm, and heating duration of 3 min) alone or in combination with gold nanoshells (diameter of 55 nm and outer gold shell thickness of 10 nm) introduced into the tumour 24 h prior to laser treatment. Magnetic resonance temperature imaging was used to measure the distribution of temperature elevation in the tumours during laser treatment. Tumours were sectioned 16 h following laser treatment, stained for Hsp27 and Hsp70, imaged with a confocal microscope, and HSP expression levels were quantified as a function of depth in the tumours.

Results: Maximum temperature elevations at the tumour surface were 28°C for laser treatment only and 50°C for laser heating in combination with gold nanoshells. Laser therapy alone caused significant induction of HSP expression in the first few millimeters of the tumour depth, whereas decreasing HSP expression occurred with greater tumour depth. Tumours treated with laser and nanoshells experienced substantial temperatures (73–78°C) at the tumour surface and temperatures greater than 53°C in the first few millimeters which eliminated HSP expression.

Conclusion: Inclusion of nanoshells in laser therapy can provide a mechanism for enhancing heat deposition capable of eliminating HSP expression within a larger tumour region compared to laser heating alone.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.