814
Views
19
CrossRef citations to date
0
Altmetric
Research Articles

Heat shock protein expression and temperature distribution in prostate tumours treated with laser irradiation and nanoshells

, , , &
Pages 791-801 | Received 18 May 2011, Accepted 20 Jul 2011, Published online: 18 Nov 2011

References

  • Stern JM, Stanfield J, Kabbani W, Hsieh JT, Cadeddu JA. Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol 2008; 179: 748–753
  • Mertyna P, Goldberg W, Yang W, Goldberg SN. Thermal ablation: A comparison of thermal dose required for radiofrequency, microwave, and laser-induced coagulation in an ex vivo bovine liver model. Acad Radiol 2009; 16: 1539–1548
  • Chen W, Liu H, Richey J. Effect of different components of laser immunotherapy in treatments of metastatic tumors in rats. Cancer Res 2002; 62: 4295–4299
  • Vlastos G, Verkooijecn A. Minimally invasive approaches for diagnosis and treatment of early-stage breast cancer. Oncologist 2007; 12: 1–10
  • Harries SA, Amin Z, Smith ME, Lees WR, Cooke J, Cooke MG, Scurr JH, Kissin MW, Bown SG. Interstitial laser photocoagulation as a treatment for breast cancer. Br J Surg 1994; 81: 1617–1619
  • Madersabacher S, Grobl M, Kramer G, Dirnhoger S, Steiner G, Marberger M. Regulation of heat shock protein 27 expression of prostastic cells in response to heat treatment. Prostate 1998; 37: 174–181
  • Fisher J, Buchanan C, Szot C, Sarkar S, Rylander C, Rylander MN. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes and laser irradiation. Cancer Res 2010; 70: 1–10
  • Burke A, Ding X, Singh R, Kraft RA, Rylander MN, Szot C, Buchanan C, Whitney J, Fisher J, Levi-Polyachenko N, et al. Rapid thermal treatment of kidney tumors with multi-walled carbon nanotubes results in long term survival. Proc Nat Acad Sci 2009; 4: 12897–12902
  • Beckham JT, Mackanos MA, Crooke C, Takahashi T, O’Connel-Rodwell C, Contag CH, Jansen ED. Assessment of cellular response to thermal laser injury through bioluminescence imaging of heat shock protein 70. Photochem Photobiol 2004; 79: 76–85
  • O’Connell-Rodwell CE, Mackanos MA, Simanovskii DM, Cao YA, Bachmann MH, Schwettman HA, Contag CH. In vivo analysis of heat-shock-protein-70 induction following pulsed laser irradiation in transgenic reporter mouse. J Biomed Opt 2008; 13: 030501
  • Vertrees RA, Jordan JM, Zwischenberger JB. Hyperthermia and chemotherapy: The Science. Current Clinical Oncology: Intraperitoneal Cancer Therapy, CW Helm, RP Edwards. Humana Press, Totowa 2007; 71–100
  • Vargus-Roig LM, Fanelli MA, Lopez LA, Gago FE, Tello O, Aznar JC, Ciocca DR. Heat shock proteins and cell proliferation in human breast cancer biopsy samples. Cancer Detect Prev 1997; 21: 441–451
  • Cornford PA, Dodson AR, Parsons KF, Desmond AD, Woolfenden A, Fordham M, Neoptolemos JP, Ke Y, Foster CS. Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 2000; 60: 7099–7105
  • Richards EH, Hickey E, Weber L, Masters JR. Effects of over-expression of small heat shock protein Hsp27 on the heat and drug sensitivities of human testis tumor cells. Cancer Res 1996; 56: 2446–2451
  • Ciocca DR, Clark GM, Tandon AK, Fuqua SAN, Welch WJ, McGuire WL. Heat shock protein Hsp70 in patients with axillary lymph node-negative breast cancer: Prognostic implications. J Natl Cancer Inst 1993; 85: 570–574
  • Fuqua SA, Oesterreich S, Hilsenbeck SG, Von Hoff DD, Eckardt J, Osborne CK. Heat shock proteins and drug resistance. Breast Cancer Res Treat 1994; 32: 67–71
  • Landriscina M, Amoroso MR, Piscazzi A, Esposito F, Heat shock proteins, cell survival and drug resistance: The mitochondrial chaperone TRAP1, a potential novel target for ovarian cancer therapy. Gynecol Oncol 2010;117:177–182
  • Tomei LD, Cope FO. Apoptosis: The Molecular Basis of Cell Death. Cold Spring Harbor Laboratory Press, New York 1991
  • Gibbons NB, Watson RWG, Coffey RNT, Brady HP, Fitzpatrick JM. Heat-shock proteins inhibit induction of prostate cancer cell apoptosis. Prostate 2000; 45: 58–65
  • Creagh EM, Sheehan D, Cotter TG. Heat shock proteins – Modulators of apoptosis in tumour cells. Leukemia 2000; 14: 1161–1173
  • Garrido C, Solary E. A role of HSPs in apoptosis through ‘protein triage’?. Cell Death Differ 2003; 10: 619–620
  • Takayama S, Reed JC, Homma S. Heat-shock proteins as regulators of apoptosis. Oncogene 2003; 22: 9041–9047
  • Levine AJ, Momand J, Finlay CA. The p53 tumor supressor gene. Nature 1991; 351: 453–456
  • Ciocca DR, Calderwood SK. Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 2005; 10: 86–103
  • Rylander MN, Diller KR, Wang S, Aggarwal S. Correlation of Hsp70 expression and cell viability following thermal stimulation of bovine aortic endothelial cells. J Biomech Eng 2005; 127: 751–757
  • Rylander MN, Feng Y, Zimmermann K, Diller KR. Measurement and mathematical modeling of thermally induced injury and heat shock protein expression kinetics in normal and cancerous prostate cells. Int J Hyperthermia 2010; 26: 748–764
  • Wang S, Xie W, Rylander MN, Tucker PW, Aggarwal S, Diller KR. Hsp70 kinetics study by continuous observation of HSP-GFP fusion protein expression on a perfusion heating stage. Biotechnol Bioeng 2007; 99: 146–154
  • Wang S, Aggarwal S, Diller KR. Heat shock protein 70 expression kinetics. J Biomech Eng 2003; 125: 794–797
  • Rylander MN, Feng Y, Bass J, Diller KR. Coordinated modeling of thermal stress induced cell injury and heat shock protein expression. Ann N Y Acad Sci 2005; 1066: 222–242
  • Rylander MN, Feng Y, Zhang Y, Bass J, Stafford RJ, Volgin A, Hazle JD, Diller KR. Optimizing heat shock protein expression induced by prostate cancer laser therapy through predictive computational models. J Biomed Opt 2006; 11: 041113
  • Rylander MN, Feng Y, Bass J, Diller KR. Heat shock protein expression and injury optimization for laser therapy design. Lasers Surg Med 2007; 39: 731–746
  • Rieger TR, Morimoto RI, Hatzimanikatis V. Mathematical modeling of the eukaryotic heat-shock response: Dynamics of the hsp70 promoter. Biophys J 2005; 88: 1646–1658
  • Barnes JA, Dix DJ, Collins BW, Luft C, Allen JW. Expression of inducible Hsp70 enhances the proliferation of MCF-7 breast cancer cells and protects against the cytotoxic effects of hyperthermia. Cell Stress Chaperones 2001; 6: 316–325
  • Beckham JT, Wilmink GJ, Mackanos MA, Takahashi K, Contag CH, Takahashi T, Jansen ED. Role of Hsp70 in cellular thermotolerance. Lasers Surg Med 2008; 40: 704–715
  • Georgopoulous C, Welch WJ. Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 1993; 9: 601–634
  • Craig EA, Weissman JS, Horwich AL. Heat shock proteins and molecular chaperones: Mediators of protein conformation and turnover in the cell. Cell 1994; 78: 365–372
  • Kurahashi T, Miyake H, Hara I, Fujisawa M. Expression of major heat shock proteins in prostate cancer: Correlation with clinicopathological outcomes in patients undergoing radical prostatectomy. J Urol 2007; 177: 757–761
  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR. Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends Biochem Sci 2006; 31: 164–172
  • Tiara T, Narita T, Iguchi-Ariga H. A novel G1-specific enhancer identified in the human heat shock protein 70 gene. Nucleic Acids Res 1997; 25: 1975–1983
  • Daugaard M, Jaattela M, Rohde M. Hsp70-2 is required for tumor cell growth and survival. Cell Cycle 2005; 4: 877–880
  • Mehlen P, Kretz-Remy C, Preville X, Arigo AP. Human Hsp27, Drosophillia Hsp27, and human ab-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNF-a-induced cell death. EMBO J 1996; 15: 2695–2706
  • Singh J, Kaur G. Hsp70 induction and oxidative stress protection mediated by a subtoxic dose of NMDA in the retinoic acid-differentiated C6 glioma cell line. Brain Res Bull 2006; 69: 37–47
  • Oesterreich S, Weng CN, Qiu M, Hilsenbeck SG, Fuqua SAW. The small heat shock protein Hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res 1993; 53: 4442–4448
  • Haraldsdóttir KH, Ivarsson K, Jansner K, Stenram U, Tranberg KG. Changes in immunocompetent cells after interstitial laser thermotherapy of breast cancer. Cancer Immunol Immunother 2011; 60: 847–856
  • Hirsch L, Gobin A, Lowery A, Tam F, Drezek R, Halas N, West J. Metal nanoshells. Ann Biomed Eng 2006; 34: 15–22
  • Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005; 5: 709–711
  • O’Neal D, Hirsch L, Halas N, Payne J, West J. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004; 209: 171–176
  • Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Nat Acad Sci 2003; 100: 13549–13554
  • Terentyuk G, Maslyakova G, Suleymanova L, Khlebstov BN, Akchurin G, Maksimova I, Tuchin V. Laser-induced tissue hyperthermia mediated by gold nanoparticles: Toward cancer phototherapy. J Biomed Opt 2009; 14: 021016
  • Gobin A, Lee M, Halas N, James W, Drezek R, West J. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. 2007; 7: 1929–1934
  • Shao N, Lu S, Wickerstrom E, Panchapakesan B. Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnology 2007; 18: 9
  • Wong Shi Kam N, O’Connel M, Wisdom J, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 2005; 102: 11600–11605
  • Zhou F, Xing D, Ou Z, Wu B, Resasco D, Chen W. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomedical Optics 2009; 14: 021009
  • Sarkar S, Fisher J, Rylander CG, Rylander MN. Photothermal response of tissue phantoms containing multi-walled carbon nanotubes. J Biomech Eng 2010; 132: 044505
  • Torti S, Byrne F, Whelan O, Levi N, Ucer B, Schmid M, Torti F, Akman S, Liu J, Ajayan P, et al. Thermal ablation therapeutics based on CNx multi-walled nanotubes. Int J Nanomed 2007; 2: 707–771
  • Sarkar S, Gurjarpadhye A, Rylander C, Rylander MN, Optical properties of breast tumor phantoms containing carbon nanotubes and nanohorns. J Biomed Optics 2011; 16:05i304-1-051304-11
  • Miyako E, Nagata H, Hirano K, Makita Y, Nakayama K, Hirotsu T. Near infrared laser triggered carbon nanohorns for selective elimination of microbes. Nanotechnology 2007; 18: 475103–475110
  • Whitney J, Sarkar S, Zhang J, Dorn H, Geohegan D, Rylander C, Campbell T, Rylander MN. Carbon nanohorns as photothermal agents for cancer therapy. Lasers Surg Med 2011; 43: 43–51
  • Zhang M, Murakami T, Ajima K, Tsuchida K, Sandanayaka A, Ito O, Iijima S, Yudasaka M. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc Nat Acad Sci 2008; 105: 14773–14778
  • Miyako E, Nagata H, Hirano K, Sakamoto K, Makita Y, Nakayama K, Hirotsu T. Photoinduced antiviral carbon nanohorns. Nanotechnology 2008; 19: 075106–075112
  • Prevo B, Esakoff S, Mikhailovsky A, Zasadzinski J. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small 2008; 4: 1183–1195
  • Oldenburg R, Averitt D, Westcott S, Halas N. Nanoengineering of optical resonances. Chem Phys Lett 1998; 288: 243–247
  • Lal S, Clare S, Halas N. Nanoscience-enabled cancer therapy: Impending clinical impact. Acc Chem Res 2008; 41: 1842–1851
  • Maksimova I, Akchurin G, Khlebtsov B, Terentyuk G, Akchurin G, Ermolaev I, Skaptsov A, Soboleva E, Khlebtsov N, Tuchin V. Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment. Med Laser Appl 2007; 22: 199–206
  • Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F. Multifunctional gold nanoshells on silica nanorattles: A platform for the combination of photothermal therapy and cheomotherapy with low systemic toxicity. Nanomedicine 2011; 50: 891–895
  • Sarkar S, Zimmermann K, Leng W, Vikesland P, Zhang J, Dorn H, Diller T, Rylander C, Rylander MN. Measurement of the thermal conductivity of carbon nanotube-tissue phantom composites with the hot wire probe method. Ann Biomed Eng 2011;39:1745–1758.
  • Feng Y, Fuentes Y, Hawkins A, Bass J, Rylander MN, Elliott A, Shetty A, Stafford RJ, Oden JT. Nanoshell-mediated laser surgery simulation for prostate cancer treatment. J Eng Comp 2009; 25: 3–13
  • O’Connel-Rodwell CE, Shriver D, Simanovskii DM, Mcclure C, Cao YA, Zhang W, Bachmann MH, Beckham JT, Jansen ED, Palanker D, et al. A genetic reporter of thermal stress defines physiologic zones over a defined temperature range. FASEB J. 2004; 18: 264–271
  • De Poorter J, De Wagter C, De Deene Y, Thomsen C, Ståhlberg F, Achten E. The proton resonance frequency shift method compared with molecular diffusion for quantitative measurement of two dimensional time dependent temperature distribution in phantom. J Magn Reson 1994; 103: 234–241
  • Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Yo, Kuroda K, Suzuki Yu. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 1995; 34: 814–823
  • Olsrud J, Wirestam R, Brockstedt S, Nilsson AMK, Tranberg K-G, Ståhlberg F, Persson BRR. MRI thermometry in phantoms by use of the proton resonance frequency shift method: Application to interstitial laser thermotherapy. Phys Med Biol 1998; 43: 2597–2613
  • Hindman JC. Proton resonance shift of water in the gas and liquid states. J Chem Phys 1966; 44: 4582–4592

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.