156
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Spinal Cord Injury Causes More Damage to Fracture Healing of Later Phase than Ovariectomy in Young Mice

, &
Pages 142-148 | Received 27 May 2011, Accepted 10 Aug 2011, Published online: 03 Oct 2011
 

Abstract

The purpose of this study was to compare the effects of spinal cord injury (SCI) and ovariectomy (OVX) on femoral fracture healing of later phase in young mice. Sixty young female C57 mice were randomized into three groups: SCI, OVX, and age-matched intact control. The femoral fracture was generated at 3 weeks after SCI or OVX. At 1 month after fracture, the femoral fracture area was evaluated through the healing status using radiograph; bone mineral density using dual X-ray absorptometry; callus formation and mineralization and neovascularization in callus using micro-computed tomography; biomechanical analysis using testing machine; and histology analysis by staining with hematoxylin-eosin stain. SCI mice showed lower bone mineral density in the femoral callus as compared with OVX mice. Callus geometric microstructural parameters of the femora in SCI mice were significantly lower than OVX mice. SCI induced significant changes of biomechanical parameters in the femoral fracture healing area. The callus formation and callus neovascularization in SCI mice were significantly lower than in OVX mice. SCI induces more deterioration of fracture healing in the femoral diaphysis than OVX.

ACKNOWLEDGMENTS

This work was supported by Technology Project funded by the Changzhou Health Bureau (KY201041). This study was supported by the Hospital and School of Medicine where the authors work. In addition, we can promise that this article has not been published in any other journal. All authors agree to this contribution.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.