156
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Spinal Cord Injury Causes More Damage to Fracture Healing of Later Phase than Ovariectomy in Young Mice

, &
Pages 142-148 | Received 27 May 2011, Accepted 10 Aug 2011, Published online: 03 Oct 2011

REFERENCES

  • Kalu, D.N. (1984). Evaluation of the pathogenesis of skeletal changes in ovariectomized rats. Endocrinology 115:507–512.
  • Turner, R.T., Vandersteenhoven, J.J., and Bell, N.H. (1987). The effects of ovariectomy and 17 beta-estradiol on cortical bone histomorphometry in growing rats. J. Bone Miner. Res. 2:115–122.
  • Surve, V.V., Andersson, N., Lehto-Axtelius, D., and Hakanson, R. (2001). Comparison of osteopenia after gastrectomy, ovariectomy and prednisolone treatment in the young female rat. Acta Orthop. Scand. 72:525–532.
  • Jiang, S.D., Jiang, L.S., and Dai, L.Y. (2007). Effects of spinal cord injury on osteoblastogenesis, osteoclastogenesis and gene expression profiling in osteoblasts in young rats. Osteoporos. Int. 18:339–349.
  • Jiang, S.D., Jiang, L.S., and Dai, L.Y. (2007). Changes in bone mass, bone structure, bone biomechanical properties, and bone metabolism after spinal cord injury: A 6-month longitudinal study in growing rats. Calcif. Tissue Int. 80:167–175.
  • Jiang, S.D., Jiang, L.S., and Dai, L.Y. (2006). Spinal cord injury causes more damage to bone mass, bone structure, biomechanical properties and bone metabolism than sciatic neurectomy in young rats. Osteoporos. Int. 17:1552–1561.
  • Jiang, S.D., Shen, C., Jiang, L.S., and Dai, L.Y. (2007). Differences of bone mass and bone structure in osteopenic rat models caused by spinal cord injury and ovariectomy. Osteoporos. Int. 18:743–750.
  • Bentley, M.D., Ortiz, M.C., Ritman, E.L., and Romero, J.C. (2002). The use of microcomputed tomography to study microvasculature in small rodents. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282:R1267–R1279.
  • Namkung-Matthai, H., Appleyard, R., Jansen, J., Hao Lin, J., Maastricht, S., Swain, M., Mason, R.S., Murrell, G.A., Diwan, A.D., and Diamond, T. (2001). Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone 28:80–86.
  • Kubo, T., Shiga, T., Hashimoto, J., Yoshioka, M., Honjo, H., Urabe, M., Kitajima, I., Semba, I., and Hirasawa, Y. (1999). Osteoporosis influences the late period of fracture healing in a rat model prepared by ovariectomy and low calcium diet. J. Steroid Biochem. Mol. Biol. 68:197–202.
  • Miyamoto, T. (1987). An experimental study on fracture healing in paraplegic rats. Nippon Seikeigeka Gakkai Zasshi 61:1135–1145.
  • Garland, D.E. (1988). Clinical observations on fractures and heterotopic ossification in the spinal cord and traumatic brain injured populations. Clin. Orthop. Relat. Res. 233:86–101.
  • Ding, W.G., Zhang, Z.M., Zhang, Y.H., Jiang, S.D., Jiang, L.S., and Dai, L.Y. (2010). Changes of substance P during fracture healing in ovariectomized mice. Regul. Pept. 159:28–34.
  • Street, J., Bao, M., de Guzman, L., Bunting, S., Peale, Jr., F.V., Ferrara, N., Steinmetz, H., Hoeffel, J., Cleland, J.L., Daugherty, A., van Bruggen, N., Redmond, H.P., Carano, R.A., and Filvaroff, E.H. (2002). Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl. Acad. Sci. U.S.A. 99:9656–9661.
  • Roberts, D., Lee, W., Cuneo, R.C., Wittmann, J., Ward, G., Flatman, R., McWhinney, B., and Hickman, P.E. (1998). Longitudinal study of bone turnover after acute spinal cord injury. Clin. Endocrinol. Metab. 83:415–422.
  • Kearns, A.E., Khosla, S., and Kostenuik, P.J. (2008). Receptor activator of nuclear factor kappa B ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev. 29:155–192.
  • McCann, R.M., Colleary, G., Geddis, C., Clarke, S.A., Jordan, G.R., Dickson, G.R., and Marsh, D. (2008). Effect of osteoporosis on bone mineral density and fracture repair in a rat femoral fracture model. J. Orthop. Res. 26:384–393.
  • Groothuis, A., Duda, G.N., Wilson, C.J., Thompson, M.S., Hunter, M.R., Simon, P., Bail, H.J., van Scherpenzeel, K.M., and Kasper, G. (2010). Mechanical stimulation of the pro-angiogenic capacity of human fracture haematoma: Involvement of VEGF mechano-regulation. Bone 47:438–444.
  • Kelly, D.J., and Jacobs, C.R. (2010). The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res. C Embryo Today 90:75–85.
  • Liu, D., Zhao, C.Q., Li, H., Jiang, S.D., Jiang, L.S., and Dai, L.Y. (2008). Effects of spinal cord injury and hindlimb immobilization on sublesional and supralesional bones in young growing rats. Bone 43:119–125.
  • Ragnarsson, K.T., and Sell, G.H. (1981). Lower extremity fractures after spinal cord injury: A retrospective study. Arch. Phys. Med. Rehabil. 62:418–423.
  • Tselentakis, G., Owen, P.J., Richardson, J.B., Kuiper, J.H., Haddaway, M.J., Dwyer, J.S., and Evans, G.A. (2001). Fracture stiffness in callotasis determined by dual-energy X-ray absorptiometry scanning. J. Pediatr. Orthop. B 10:248–254.
  • Majumdar, S., Kothari, M., Augat, P., Newitt, D.C., Link, T.M., Lin, J.C., Lang, T., Lu, Y., and Genant, H.K. (1998). High-resolution magnetic resonance imaging: Three-dimensional trabecular bone architecture and biomechanical properties. Bone 22:445–454.
  • Kleerekoper, M., Villanueva, A.R., Stanciu, J., Rao, D.S., and Parfitt, A.M. (1985). The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif. Tissue Int. 37:594–597.
  • Dempster, D.W. (2000). The contribution of trabecular architecture to cancellous bone quality. J. Bone Miner. Res. 15:20–23.
  • Felsenberg, D., and Boonen, S. (2005). The bone quality framework: Determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin. Ther. 27:1–11.
  • Guldberg, R.E., Ballock, R.T., Boyan, B.D., Duvall, C.L., Lin, A.S., Nagaraja, S., Oest, M., Phillips, J., Porter, B.D., Robertson, G., and Taylor, W.R. (2003). Analyzing bone, blood vessels, and biomaterials with microcomputed tomography. IEEE Eng. Med. Biol. Mag. 22:77–83.
  • Duvall, C.L., Taylor, W.R., Weiss, D., Wojtowicz, A.M., and Guldberg, R.E. (2007). Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J. Bone Miner. Res. 22:286–297.
  • Lu, C., Marcucio, R., and Miclau, T. (2006). Assessing angiogenesis during fracture healing. Iowa Orthop. J. 26:17–26.
  • Hisatome, T., Yasunaga, Y., Yanada, S., Tabata, Y., Ikada, Y., and Ochi, M. (2005). Neovascularization and bone regeneration by implantation of autologous bone marrow mononuclear cells. Biomaterials 26:4550–4556.
  • Glowacki, J. (1998). Angiogenesis in fracture repair. Clin. Orthop. Relat. Res. 355(Suppl.) S82–S89.
  • Keramaris, N.C., Calori, G.M., Nikolaou, V.S., Schemitsch, E.H., and Giannoudis, P.V. (2008). Fracture vascularity and bone healing: A systematic review of the role of VEGF. Injury 39(Suppl. 2):S45–S57.
  • Eriksen, E.F., Eghbali-Fatourechi, G.Z., and Khosla, S. (2007). Remodeling and vascular spaces in bone. J. Bone Miner. Res. 22:1–6.
  • Manigrasso, M.B., and O’Connor, J.P. (2004). Characterization of a closed femur fracture model in mice. J. Orthop. Trauma 18:687–695.
  • Garcia-Sanz, A., Rodriguez-Barbero, A., Bentley, M.D., Ritman, E.L., and Romero, J.C. (1998). Three-dimensional microcomputed tomography of renal vasculature in rats. Hypertension 31:440–444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.