829
Views
36
CrossRef citations to date
0
Altmetric
Review Article

Metabolic phenotyping applied to pre-clinical and clinical studies of acetaminophen metabolism and hepatotoxicity

Pages 29-44 | Received 18 Sep 2014, Accepted 28 Oct 2014, Published online: 23 Dec 2014
 

Abstract

Acetaminophen (APAP, paracetamol, N-acetyl-p-aminophenol) is a widely used analgesic that is safe at therapeutic doses but is a major cause of acute liver failure (ALF) following overdose. APAP-induced hepatotoxicity is related to the formation of an electrophilic reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI), which is detoxified through conjugation with reduced glutathione (GSH). One method that has been applied to study APAP metabolism and hepatotoxicity is that of metabolic phenotyping, which involves the study of the small molecule complement of complex biological samples. This approach involves the use of high-resolution analytical platforms such as NMR spectroscopy and mass spectrometry to generate information-rich metabolic profiles that reflect both genetic and environmental influences and capture both endogenous and xenobiotic metabolites. Data modeling and mining and the subsequent identification of panels of candidate biomarkers are typically approached with multivariate statistical tools. We review the application of multi-platform metabolic profiling for the study of APAP metabolism in both in vivo models and humans. We also review the application of metabolic profiling for the study of endogenous metabolic pathway perturbations in response to APAP hepatotoxicity, with a particular focus on metabolites involved in the biosynthesis of GSH and those that reflect mitochondrial function such as long-chain acylcarnitines. Taken together, this body of work sheds much light on the mechanism of APAP-induced hepatotoxicity and provides candidate biomarkers that may prove of translational relevance for improved stratification of APAP-induced ALF.

Acknowledgements

Professors Ian Wilson and John Lindon are acknowledged for their insightful discussion and for proof-reading the manuscript. Mr Michael Kyriakides is acknowledged for provision of (unpublished data).

Declaration of interest

The author reports no conflicts of interest. The author alone is responsible for the content and writing of this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.