201
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Studies on the in vitro and in vivo degradation behavior of amino acid derivative-based organogels

, , , , , , , & show all
Pages 1732-1741 | Received 18 Dec 2015, Accepted 21 Mar 2016, Published online: 19 Apr 2016
 

Abstract

The in vitro degradation behavior of organogel with different gelators based on amino acid was investigated in detail. Two methods were applied in this research: weighting method and high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) method, which was established for the first time. Their degradation behaviors in vivo were investigated by varying the kind and concentration of gelators via subcutaneous implantation. The results showed that the stronger the gelation ability or the higher the gelator concentration, the slower the degradation rate of organogel. Moreover, the organogel prepared by oils with longer alkyl length degraded slower than that of the shorter ones, which also decreased in thermal stability and mechanical strength. The investigation on degradation process showed that the degradation rate was mainly controlled by the collapse of network structure formed by gelators. In conclusion, organogel had a tunable degradation rate through altering the gelator type, oil type and the gelator concentration. It remains a promising candidate for subcutaneous in-situ implant as drug delivery vehicle.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Funding information

This work was supported by the National Natural Science Foundation of China (No. 81273445).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.