794
Views
147
CrossRef citations to date
0
Altmetric
Research Article

Calculation of the biological effects of ion beams based on the microscopic spatial damage distribution pattern

, , , &
Pages 103-107 | Received 17 Dec 2010, Accepted 27 Jul 2011, Published online: 05 Oct 2011
 

Abstract

Purpose: To present details of the recent version of the ‘Local Effect Model’ (LEM), that has been developed and implemented in treatment planning for the ion beam therapy pilot project performed at GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany.

Materials and methods: The new version of the model is based on a detailed consideration of the spatial distribution of the initial damages, i.e., double-strand breaks (DSB). This spatial distribution of DSB is obtained from the radial dose profile of the ion track using Monte Carlo methods. These distributions are then analyzed with regard to the proximity of DSB. This version of the model also facilitates the calculation of full dose response curves up to arbitrary high doses, thus allowing to thoroughly check the approximations previously used to estimate the quadratic term (β-term) for the linear-quadratic description of dose response curves.

Results: The accuracy of the model predictions is demonstrated by good agreement of the relative biological effectiveness (RBE) as a function of the linear energy transfer (LET) with experimental data obtained for V79 cells after carbon irradiation. The β-values predicted by the full simulation tend to be larger as compared to the approximation in the intermediate LET range.

Conclusion: The new version of the model allows a more mechanistic description of the biological effects of ion radiation. The full simulation is a prerequisite for tests of the validity of the approach at high doses, which are of particular interest for application in hypofractionation studies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.