787
Views
52
CrossRef citations to date
0
Altmetric
Research Article

Selenium potentiates the anticancer effect of cisplatin against oxidative stress and calcium ion signaling-induced intracellular toxicity in MCF-7 breast cancer cells: involvement of the TRPV1 channel

, , , &
Pages 84-93 | Received 24 Jan 2016, Accepted 19 Feb 2016, Published online: 08 Apr 2016
 

Abstract

Background: In breast cancers, calcium signaling is a main cause of proliferation and apoptosis of breast cancer cells. Although previous studies have implicated the transient receptor potential vanilloid 1 (TRPV1) cation channel, the synergistic inhibition effects of selenium (Se) and cisplatin in cancer and the suppression of ongoing apoptosis have not yet been investigated in MCF-7 breast cancer cells. This study investigates the anticancer properties of Se through TRPV1 channel activity in MCF-7 breast cancer cell line cultures when given alone or in combination with cisplatin. Materials: The MCF-7 cells were divided into four groups: the control group, the Se-treated group (200 nM), the cisplatin-treated group (40 μM) and the Se + cisplatin-treated group. Results: The intracellular free calcium ion concentration and current densities increased with TRPV1 channel activator capsaicin (0.01 mM), but they decreased with the TRPV1 blocker capsazepine (0.1 mM), Se, cisplatin, and Se + cisplatin incubations. However, mitochondrial membrane depolarization, apoptosis, and the caspase 3, and caspase 9 values increased in the Se-treated group and the cisplatin-treated group, although Western blot (procaspase 3 and 9) results and the cell viability levels decreased with the Se and Se + cisplatin treatments. Apoptosis and caspase-3 were further increased with the Se + cisplatin treatment. Intracellular reactive oxygen species production increased with the cisplatin treatment, but not with the Se treatment. Conclusion: This study’s results report, for the first time, that at a cellular level, Se and cisplatin interact on the same intracellular toxic cascade, and the combination of these two drugs can result in a remarkable anticancer effect through modulation of the TRPV1.

Disclosure statement

The authors report no declarations of interest.

Funding information

The project was supported by Neuroscience Research Center of Suleyman Demirel University, Isparta, Turkey (Project number: 2016–01).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.