12
Views
36
CrossRef citations to date
0
Altmetric
Research Article

A Novel Agonist Binding Site on Nicotinic Acetylcholine Receptors

, , , , , , , , & show all
Pages 413-436 | Published online: 26 Sep 2008
 

Abstract

This report provides evidence that physostigmine (Phy) and benzoquinonium (BZQ) are able to activate nicotinic acetylcholine receptors (nAChRs) through binding site(s) distinct from those of the natural transmitter, ACh. Such findings are in agreement with a second pathway of activation of nAChRs. Receptor activation may be modulated through the novel site, and, consequently, physiological processes involving nicotinic synapses could be controlled. Using patch clamp techniques, single channel currents activated by ACh and anatoxin were recorded from frog interosseal muscle fibers under cell-attached condition and outside-out patches excised from cultured rat hippocampal neurons. Whole cell nicotinic currents were also studied in the cultured neurons. In most of the neurons, nicotinic responses were blocked by the nicotinic antagonists methyllycaconitine (MLA) and α-bungarotoxin (α-BGT). Evaluation of the effects of Phy and BZQ on the muscle and on the α-BGT- and MLA-sensitive neuronal nAChRs demonstrated that both compounds were open channel blockers at these receptors. Furthermore, at low micromolar concentrations, Phy and BZQ activated the nAChRs of all preparations tested, such an effect being unexpectedly resistant to α-BGT or MLA. Thus, the nAChRs could be activated via two distinct binding sites: one for ACh and the other for Phy and BZQ. These findings and previous biochemical results led us to suggest that a putative endogenous ligand could bind to the new site and thereby regulate the activation of nAChRs in nicotinic synapses.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.