12
Views
36
CrossRef citations to date
0
Altmetric
Research Article

A Novel Agonist Binding Site on Nicotinic Acetylcholine Receptors

, , , , , , , , & show all
Pages 413-436 | Published online: 26 Sep 2008

References

  • Grenningloh G., Rienitz A., Schmidt B., Methfessel C., Zensen M., Beyreuther K., Gundelfinger E. D., Betz H. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature (Lond.) 1987; 328: 215–220
  • Schofield P., Darlison M. G., Fujita N., Burt D., Stephenson F. A., Rodriquex H., Rhee L. M., Ramachandran J., Reale V., Glencorse T. A., Seeburg P. H., Barnard E. A. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor superfamily. Nature (Lond.) 1987; 328: 221–227
  • Maelicke A., Fulpius B. W., Klett R. P., Reich E. Acetylcholine receptor: Responses to drug binding. J. Biol. Chem. 1977; 252: 4811–4830
  • Karlin A. Molecular properties of nicotinic acetylcholine receptors. The Cell Surface and Neuronal Function, C. W. Cotman, G. Poste, G. L. Nicolson. Biochemical Press, Amsterdam, North Holland 1980; 191–260
  • Spivak C. E., Albuquerque E. X. The dynamic properties of the nicotinic receptor ionic channel complex: activation and blockade. Progress in Cholinergic Biology: Models of Cholinergic Synapses, I. Hanin, A. M. Goldberg. Raven Press, New York 1982; 323–357
  • Albuquerque E. X., Daly J. W., Warnick J. E. Macromolecular sites for specific neurotoxins and drugs on chemosensitive synapses and electrical excitation in biological membranes. Ion Channels, T. Narahashi. Plenum Press, New York 1988; Vol. 1: 95–162
  • Mishina M., Takai T., Imoto K., Noda M., Takahashi T., Numa S., Methfessel C., Sakmann B. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 1986; 321: 406–411
  • Neumann D., Barchan D., Fridkin M., Fuchs S. Analysis of ligand binding to the synthetic dodecapeptide 185–196 of the acetylcholine receptor α subunit. Proc. Natl. Acad. Sci. USA 1986; 83: 9250–9253
  • Lagenbuch-Cachat J., Bon C., Mulle C., Goeldner M., Hirth C., Changeux J.-P. Photoaffinity labeling of the acetylcholine binding sites on the nicotinic receptor by an aryldiazonium derivative. Biochemistry 1988; 27: 2346–2357
  • Spivak C. E., Waters J., Witkop B., Albuquerque E. X. Potencies and channel properties induced by semirigid agonists at frog nicotinic acetylcholine receptors. Mol. Pharmacol. 1983; 23: 337–343
  • Swanson K. L., Allen C. N., Aronstam R. S., Rapoport H., Albuquerque E. X. Molecular mechanisms of the potent and stereospecific nicotinic receptor agonist (+)-Anatoxin-a. Mol. Pharmacol. 1986; 29: 250–257
  • Nambi-Aiyar V., Benn M. H., Hanna T., Jacyno J., Roth S. H., Wilkens J. L. The principal toxin of Delphinium brownii (Rydb.) and its mode of action. Experientia (Basel) 1979; 35: 1367–1368
  • Macallan D. R. E., Lunt G. G., Wonnacott S., Swanson K. L., Rapoport H., Albuquerque E. X. Methyllycaconitine and (+)-anatoxin-a differentiate between nicotinic receptors in vertebrate and invertebrate nervous systems. FEBS Lett. 1988; 226: 357–363
  • Alkondon M., Pereira E. F. R., Wonnacott S., Albuquerque E. X. Blockade of nicotinic currents in hippocampal neurons defines methyllycaconitine as a potent and specific receptor antagonist. Mol. Pharmacol. 1992; 41: 802–808
  • Aracava Y., Ikeda S. R., Daly J. W., Brookes N., Albuquerque E. X. Interactions of bupivacaine with the nicotinic receptor: Analysis of single-channel currents. Mol. Pharmacol. 1984; 26: 304–313
  • Neher E. The charge carried by single-channel currents of rat cultured muscle cells in the presence of local anesthetics. J. Physiol. (London) 1983; 339: 663–678
  • Albuquerque E. X., Tsai M.-C., Aronstam R. S., Eldefrawi A. T., Eldefrawi M. E. Sites of action of phencyclidine. II. Interaction with the ionic channel of the nicotinic receptor. Mol. Pharmacol. 1980; 18: 167–178
  • Ramoa A. S., Alkondon M., Aracava Y., Irons J., Lunt G. G., Deshpande S. S., Wonnacott S., Aronstam R. S., Albuquerque E. X. The anticonvulsant MK-801 interacts with peripheral and central nicotinic acetylcholine receptor ion channels. J. Pharmacol. Exp. Ther. 1990; 254: 71–82
  • Albuquerque E. X., Kuba K., Daly J. Effect of histrionicotoxin on the ionic conductance modulator of the cholinergic receptor: A quantitative analysis of the end-plate current. J. Pharmacol. Exp. Ther. 1974; 189: 513–524
  • Aronstam R. S., Eldefrawi A. T., Pessah I. N., Daly J. W., Albuquerque E. X., Eldefrawi M. E. Regulation of [3H]perhydrohistrionicotoxin binding to Torpedo ocellata electroplax by effectors of the acetylcholine receptor. J. Biol. Chem. 1981; 256: 2843–2850
  • El-Fakahany E. F., Miller E. R., Abbassy M. A., Eldefrawi A. T., Eldefrawi M. E. Alcohol modulations of drug binding to the channel of the nicotinic acetylcholine receptor. J. Pharmacol. Exp. Ther. 1983; 224: 284–296
  • Whiting P., Lindstrom J. Purification and characterization of a nicotinic acetylcholine receptor from rat brain. Proc. Natl. Acad. Sci. USA 1987; 84: 595–599
  • Boulter J., Connolly J., Deneris E., Goldman D., Heinemann S., Patrick J. Functional expression of two cDNA clones identifies a gene family. Proc. Natl. Acad. Sci. USA 1987; 84: 7763–7767
  • Duvoisin R. M., Deneris E. S., Patrick J., Heinemann S. The functional diversity of the neuronal nicotinic acetylcholine receptors is increased by a novel subunit:β4. Neuron 1989; 3: 487–496
  • Papke R. L., Boulter J., Patrick J., Heinemann S. Single-channel currents of rat neuronal acetylcholine receptors expressed in Xenopus oocytes. Neuron 1989; 3: 589–596
  • Aracava Y., Deshpande S. S., Swanson K. L., Rapoport H., Wonnacott S., Lunt G., Albuquerque E. X. Nicotinic acetylcholine receptors in cultured neurons from the hippocampus and the brain stem of the rat characterized by single channel recordings. FEBS Lett. 1987; 222: 63–70
  • Alkondon M., Albuquerque E. X. α-cobratoxin blocks the nicotinic acetylcholine receptor in rat hippocampal neurons. Eur. J. Pharmacol. 1990; 191: 505–506
  • Albuquerque E. X., Costa A. C. S., Alkondon M., Shaw K. P., Ramoa A. S., Aracava Y. Functional properties of the nicotinic and glutamatergic receptors. J. Rec. Res. 1991; 11: 603–625
  • Alkondon M., Albuquerque E. X. Initial characterization of the nicotinic acetylcholine receptors in rat hippocampal neurons. J. Rec. Res. 1991; 11: 1001–1022
  • Albuquerque E. X., Alkondon M., Lima-Landman M. T., Deshpande S. S., Ramoa A. Molecular targets of noncompetitive blockers at central and peripheral nicotinic and glutamatergic receptors. Neuromuscular Junction, L. C. Sellin, R. Libelius, S. Thesleff. Elsevier Science Publishers, New York 1988; 273–300
  • Lipton S. A., Aizeman E., Loring R. H. Neural nicotinic acetylcholine responses in solitary mammalian retinal ganglion cells. Pflügers Arch. 1987; 410: 37–43
  • Berg D. K., Boyd R. T., Halvorsen S. W., Hoggins L. S., Jacob M. H., Margiotta J. F. Regulating the number and function of neuronal acetylcholine receptors. TiNS 1989; 12: 16–21
  • Mulle C., Changeux J.-P. A novel type of nicotinic receptor in the rat central nervous system characterized by patch-clamp technique. J. Neurosci. 1990; 10: 169–175
  • Couturier S., Bertrand D., Matter J.-M., Hernandez M.-C., Bertrand S., Millar N., Valera S., Barkas T., Balivet M. A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homooligomeric channel blocked by α-BTX. Neuron 1990; 5: 847–856
  • Pereira E. F. R., Wonnacott S., Albuquerque E. X. Methyllycaconitine (MLA) is a potent antagonist of nicotinic acetylcholine receptors (nAChR) on rat hippocampal neurons: Single channel studies. Soc. Neurosci. Abs. 1991; 17: 960
  • Gordon J. J., Leadbeater L., Maidment M. P. The protection of animals against organophosphate poisoning by pretreatment with a carbamate. Toxicol. Appl. Pharmacol. 1978; 43: 207–216
  • Deshpande S. S., Viana G. B., Kauffman F. C., Rickett D. L., Albuquerque E. X. Effectiveness of physostigmine as a pretreatment drug for protection of rats from organophosphate poisoning. Fundam. Appl. Toxicol. 1986; 6: 566–577
  • Thal L. J., Fuld P. A., Masur D. M., Sharpless N. S. Oral physostigmine and lecithin improve memory in Alzheimer's disease. Ann. Neurol. 1983; 13: 491–496
  • Albuquerque E. X., Deshpande S. S., Kawabuchi M., Aracava Y., Idriss M., Rickett D. L., Boyne A. F. Multiple actions of anticholinesterase agents on chemosensitive synapses: Molecular basis for prophylaxis and treatment of organophosphate poisoning. Fund. Appl. Toxicol. 1985; 5: S182–S203
  • Albuquerque E. X., Aracava Y., Idriss M., Schonenberger B., Brossi A., Deshpande S. S. Activation and blockade of the nicotinic and glutamatergic synapses by reversible and irreversible cholinesterase inhibitors. Neurobiology of Acetylcholine, N. J. Dun, R. L. Perlman. Plenum Press, New York 1987; 301–328
  • Shaw K.-P., Aracava Y., Akaike A., Daly J. W., Rickett D. L., Albuquerque E. X. The reversible cholinesterase inhibitor physostigmine has channel-blocking and agonist effects on the acetylcholine receptor-ion channel complex. Mol. Pharmacol. 1985; 28: 527–538
  • Albuquerque E. X., Aracava Y., Cintra W. M., Brossi A., Schonenberger B., Deshpande S. S. Structure-activity relationship of reversible of reversible cholinesterase inhibitors: activation, channel blockade and stereospecificity of the nicotinic acetylcholine receptor-ion channel. Braz. J. Med. Biol. Res. 1988; 21: 1173–1196
  • Akaike A., Ikeda S. R., Brookes N., Pascuzzo G. J., Rickett D. L., Albuquerque E. X. The nature of the interactions of pyridostigmine with the nicotinic acetylcholine-receptor ion channel complex II. Patch clamp studies. Mol. Pharmacol. 1984; 25: 102–112
  • Albuquerque E. X., Akaike A., Shaw K.-P., Rickett D. L. The interaction of anticholinesterase agents with the acetylcholine receptor-ionic channel complex. Fundam. Appl. Toxicol. 1984; 4: S27–S33
  • Okonjo K. O., Kuhlmann J., Maelicke A. A second pathway for the activation of the Torpedo acetylcholine receptor. Eur. J. Biochem. 1991; 200: 671–677
  • Maelicke A., Coban T., Conti-Tronconi B. M., Diethelm B., Hendlinger P., Methfessel C., Okonjo K. O., Pereira E. F. R., Schrattenholz A., Schroeder B., Albuquerque E. X. Physostigmine and neuromuscular transmission. Ann. N. Y. Acad. Sci. 1992, submitted
  • Kuhlmann J., Okonjo K. O., Maelicke A. Desensitization is a property of the cholinergic binding region of the nicotinic acetylcholine receptor, not of the receptor-integral ion channel. FEBS Lett. 1991; 279: 216–218
  • Cavallito C. J., Foldes F. F. Molecular interaction and modulation of adverse actions of muscle relaxants in anesthesiology. Drug Metabol. Rev. 1984; 15: 591–618
  • Tano T., Maelicke A., Aronstam R. S., Albuquerque E. X. Benzoquinonium (BZQ) interactions with peripheral nicotinic acetylcholine receptors (AChR): Electrophysiological and biochemical studies. Soc. Neurosci. Abs. 1991; 17: 1527
  • Tano T., Maelicke A., Aronstam R. S., Albuquerque E. X. Interactions of benzoquinonium with muscle nicotinic acetylcholine receptors, In preparation
  • Albuquerque E. X., Barnard E. A., Porter C. W., Warnick J. E. The density of acetylcholine receptors and their sensitivity in the postsynaptic membrane of muscle endplates. Proc. Natl. Acad. Sci. USA 1974; 71: 2818–2822
  • Albuquerque E. X., Gage P. W. Differential effects of perhydrohistrionicotoxin on neurally and iontophoretically evoked endplate currents. Proc. Natl. Acad. Sci. USA 1978; 75: 1596–1599
  • Albuquerque E. X., Gage P. W., Oliveira A. C. Differential effect of perhydrohistrionicotoxin on “intrinsic” and “extrinsic” end-plate responses. J. Physiol. (Lond.) 1979; 297: 423–442
  • Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 1981; 391: 85–100
  • Sachs F., Neil J., Barkakati N. The automated analysis of data from single ionic channels. Pflügers Arch. 1982; 395: 331–340
  • Albuquerque E. X., Maelicke A., Pereira E. F. R. Single channel currents activated by physostigmine (PHY) in hippocampal neurons are blocked by benzoquinonium (BZQ) but not by methyllycaconitine (MLA). Soc. Neurosci. Abs. 1991; 17: 585
  • Pereira E. F. R., Maelicke A., Albuquerque E. X. (-)Physostigmine directly activates nicotinic acetylcholine receptors of cultured hippocampal neurons, In preparation
  • Sherby S. M., Eldefrawi A. T., Albuquerque E. X., Eldefrawi M. E. Comparison of the actions of carbamate anticholinesterases on the nicotinic acetylcholine receptor. Mol. Pharmacol. 1985; 27: 343–348
  • Deshpande S. S., Albuquerque E. X. Effect of (-)Physostigmine (PHY) and narcotic antagonist (+)benzylcarbamoyleseroline (BCE) on NMDA and quisqualate receptors in mammalian brain. Soc. Neurosci. Abs. 1988; 14: 97
  • Schrattenholz A., Godovac-Zimmermann J., Schafer H.-J., Albuquerque E. X., Maelicke A. Photoaffinity labeling of Torpedo acetylcholine receptor by the reversible cholinesterase inhibitor physostigmine. Proc. Natl. Acad. Sci. USA. 1992, submitted
  • Adler M., Albuquerque E. X., Lebeda F. J. Kinetic analysis of endplate currents altered by atropine and scopolamine. Mol. Pharmacol. 1978; 14: 514–529

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.