313
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The effect of α- or β-casein addition to waxy maize starch on postprandial levels of glucose, insulin, and incretin hormones in pigs as a model for humans

, , , , , , & show all
Article: 7989 | Received 08 Jul 2011, Accepted 08 Feb 2012, Published online: 13 Apr 2012
 

Background

Starch is a main source of glucose and energy in the human diet. The extent to which it is digested in the gastrointestinal tract plays a major role in variations in postprandial blood glucose levels. Interactions with other biopolymers, such as dairy proteins, during processing can influence both the duration and extent of this postprandial surge.

Objective

To evaluate the effect of the addition of bovine α- or β-casein to waxy maize starch on changes in postprandial blood glucose, insulin, and incretin hormones [glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1)] in 30 kg pigs used as an animal model for humans.

Design

Gelatinised starch, starch gelatinised with α-casein, and starch gelatinised with β-casein were orally administered to trained pigs (n = 8) at a level of 60 g of available carbohydrate. Pre- and postprandial glucose measurements were taken every 15 min for the first hour and every 30 min thereafter up to 180 min. Insulin, GIP, and GLP-1 levels were measured in plasma samples up to 90 min postprandial.

Results

Starch gelatinised with α-casein had a significantly (p < 0.05) lower peak viscosity on pasting and resulted in significantly lower glucose release at 15, 30, and 90 min postprandial compared to starch gelatinised with β-casein. During the first 45-min postprandial, the area under the glucose curve (AUC) for starch gelatinised with α-casein was significantly (p < 0.05) lower than that for starch gelatinised with β-casein. There was also a significant (p < 0.05) difference at T30 in GIP levels in response to the control compared to starch gelatinised with α- or β-casein. Significant (p < 0.05) increases in several free amino acid concentrations were observed on ingestion of either α- or β-casein gelatinised with starch at 30 and 90 min postprandial compared to starch alone. In addition, plasma levels of six individual amino acids were increased on ingestion of starch gelatinised with α-casein compared to ingestion of starch gelatinised with β-casein.

Conclusion

The presence of casein fractions (α- or β-casein) in gelatinised waxy maize starch affects swelling characteristics, viscosity, and subsequent in vivo digestion as determined by glucose levels in blood postingestion.

Acknowledgement

We would like to thank Stefan Buzoianu and William Ryan for cannulation of the pigs and Paula O. Connor for amino acid analysis. We would like to acknowledge Kerry Dairy Ingredients, Ltd., for supplying the casein fractions used in this study. All authors have read and approved the final manuscript.