200
Views
18
CrossRef citations to date
0
Altmetric
Review

Improving biofuel production in phototrophic microorganisms with systems biology

, &
Pages 125-144 | Published online: 09 Apr 2014
 

Abstract

Biofuels derived from algal energy carriers, including lipids, starch and hydrogen, offer a promising, renewable alternative to fossil fuels. Unfortunately, native algal metabolisms are not optimized for the accumulation of these renewable bioenergy carriers. Systems biology, which includes genomics, transcriptomics, proteomics, metabolomics and lipidomics, can inform and provide key insights to advance algal strain development for biotechnological applications. Recent advances in analytical technologies have enabled these sophisticated, high-throughput, holistic ‘omics’ techniques to generate highly accurate and quantitative datasets that can be leveraged to improve biofuel phenotypes in phototrophic microorganisms. The study of algal genomes and transcriptomes allows for the identification of genes, metabolic pathways and regulatory networks. Investigations of algal proteomes reveal protein levels, locations and post-translational modifications, while study of the metabolome reveals metabolite fluxes and intermediates. All of these systems-biology tools are integral for investigating algal metabolism from the whole-cell perspective. This review focuses on how systems biology has been applied to studying metabolic networks in algae and cyanobacteria, and how these technologies can be used to improve bioenergy-carrier accumulation.

Financial & competing interests disclosure

The authors of this work were supported by the United States Air Force Office of Scientific Research under grant FA9550–05–1–0365 and the United States Department of Energy Basic Energy Sciences and Biological and Environmental Sciences grants. Robert E Jinkerson was supported by a Graduate Research Fellowship from the National Science Foundation. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.