200
Views
18
CrossRef citations to date
0
Altmetric
Review

Improving biofuel production in phototrophic microorganisms with systems biology

, &
Pages 125-144 | Published online: 09 Apr 2014

Bibliography

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol.19(3),235–240 (2008).
  • Merchant SS, Prochnik SE, Vallon O et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science318(5848),245–250 (2007).
  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell9(4),486–501 (2010).
  • Zhang W, Li F, Nie L. Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology156(2),287–301 (2010).
  • Jamers A, Blust R, De Coen W. Omics in algae: paving the way for a systems biological understanding of algal stress phenomena? Aquat. Toxicol.92(3),114–121 (2009).
  • Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet.2(1),343–372 (2001).
  • Ideker T, Thorsson V, Ranish JA et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science292(5518),929–934 (2001).
  • Hood L, Heath JR, Phelps ME, Lin B. Systems biology and new technologies enable predictive and preventative medicine. Science306(5696),640–643 (2004).
  • Xu P, Koffas MA. Metabolic engineering of Escherichia coli for biofuel production. Biofuels1(3),493–504 (2010).
  • Grossman AR. Paths toward algal genomics. Plant Physiol.137(2),410–427 (2005).
  • Meuser JE, Ananyev G, Wittig LE et al. Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. J. Biotechnol.142(1),21–30 (2009).
  • Grossman AR, Croft M, Gladyshev VN et al. Novel metabolism in Chlamydomonas through the lens of genomics. Curr. Opin. Plant Biol.10(2),190–198 (2007).
  • Blanc G, Duncan G, Agarkova I et al. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell22(9),2943–2955 (2010).
  • Worden AZ, Lee JH, Mock T et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science324(5924),268–272 (2009).
  • Palenik B, Grimwood J, Aerts A et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc. Natl Acad. Sci. USA104(18),7705–7710 (2007).
  • Derelle E, Ferraz C, Rombauts S et al. Genome nalysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc. Natl Acad. Sci. USA103(31),11647–11652 (2006).
  • Bowler C, Allen AE, Badger JH et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature456(7219),239–244 (2008).
  • Armbrust EV, Berges JA, Bowler C et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science306(5693),79–86 (2004).
  • Matsuzaki M, Misumi O, Shin-i T et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature428(6983),653–657 (2004).
  • Douglas S, Zauner S, Fraunholz M et al. The highly reduced genome of an enslaved algal nucleus. Nature410(6832),1091–1096 (2001).
  • Liolios K, Chen I-MA, Mavromatis K et al. The genomes on line database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res.38,D346–D354 (2010).
  • Swingley WD, Chen M, Cheung PC et al. Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc. Natl Acad. Sci. USA105(6),2005–2010 (2008).
  • Kaneko T, Nakamura Y, Wolk CP et al. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res.8(5),205–213 (2001).
  • Kaneko T, Nakajima N, Okamoto S et al. Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Res.14(6),247–256 (2007).
  • Rocap G, Larimer FW, Lamerdin J et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature424(6952),1042–1047 (2003).
  • Palenik B, Brahamsha B, Larimer FW et al. The genome of a motile marine Synechococcus. Nature424(6952),1037–1042 (2003).
  • Kaneko T, Sato S, Kotani H et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res.3(3),109–136 (1996).
  • Nakamura Y, Kaneko T, Sato S et al. Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res.9(4),123–130 (2002).
  • Hardison RC. Comparative genomics. PLoS Biol.1(2),156–160 (2003).
  • Barbier G, Oesterhelt C, Larson MD et al. Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol.137(2),460–474 (2005).
  • Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB. Microbial biosynthesis of alkanes. Science329(5991),559–562 (2010).
  • Grossman A, Karpowicz S, Heinnickel M et al. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation. Photosynth. Res.160(1–2),3–17 (2010).
  • Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J.57(1),120–131 (2009).
  • DalCorso G, Pesaresi P, Masiero S et al. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell132(2),273–285 (2008).
  • Duan K, Yi K, Dang L, Huang H, Wu W, Wu P. Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. Plant J.54(6),965–975 (2008).
  • Alvarez AF, Alvarez HM, Kalscheuer R, Waltermann M, Steinbuchel A. Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630. Microbiology154(8),2327–2335 (2008).
  • Mussgnug JH, Thomas-Hall S, Rupprecht J et al. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol. J.5(6),802–814 (2007).
  • Peers G, Truong TB, Ostendorf E et al. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature462(7272),518–521 (2009).
  • Moellering ER, Benning C. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot. Cell9(1),97–106 (2010).
  • Pootakham W, Gonzalez-Ballester D, Grossman AR. Identification and regulation of plasma membrane sulfate transporters in Chlamydomonas reinhardtii. Plant Physiol.153(4),1653–1668 (2010).
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet.10(1),57–63 (2009).
  • Eberhard S, Jain M, Im C et al. Generation of an oligonucleotide array for analysis of gene expression in Chlamydomonas reinhardtii. Curr. Genet.49(2),106–124 (2006).
  • Frias-Lopez J, Shi Y, Tyson GW et al. Microbial community gene expression in ocean surface waters. Proc. Natl Acad. Sci. USA105(10),3805–3810 (2008).
  • Hegde P, Qi R, Abernathy K et al. A concise guide to cDNA microarray analysis. BioTechniques29,548–562 (2000).
  • Pariset L, Chillemi G, Bongiorni S, Spica VR, Valentini A. Microarrays and high-throughput transcriptomic analysis in species with incomplete availability of genomic sequences. New Biotechnol.25(5),272–279 (2009).
  • Im CS, Grossman AR. Identification and regulation of high light-induced genes in Chlamydomonas reinhardtii. Plant J.30(3),301–313 (2002).
  • Zhang Z, Shrager J, Jain M, Chang C-W, Vallon O, Grossman AR. Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot. Cell3(5),1331–1348 (2004).
  • Miura K, Yamano T, Yoshioka S et al. Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol.135(3),1595–1607 (2004).
  • Ledford HK, Chin BL, Niyogi KK. Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryot. Cell6(6),919–930 (2007).
  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR. Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J. Biol. Chem.282(35),25475–25486 (2007).
  • Dubini A, Mus F, Seibert M, Grossman AR, Posewitz MC. Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity. J. Biol. Chem.284(11),7201–7213 (2009).
  • Moseley JL, Chang C-W, Grossman AR. Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryot. Cell5(1),26–44 (2006).
  • dos Santos Ferreira V, Rocchetta I, Conforti V, Bench S, Feldman R, Levin MJ. Gene expression patterns in Euglena gracilis: insights into the cellular response to environmental stress. Gene389(2),136–145 (2007).
  • Minoda A, Nagasawa K, Hanaoka M, Horiuchi M, Takahashi H, Tanaka K. Microarray profiling of plastid gene expression in a unicellular red alga, Cyanidioschyzon merolae. Plant Mol. Biol.59(3),375–385 (2005).
  • Eom H, Lee C-G, Jin E. Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta223(6),1231–1242 (2006).
  • Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML. Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J. Biol. Chem.279(24),25711–25720 (2004).
  • Sheehan J, Dunahay T, Benemann J, Roessler P. A look back at the US Department of Energy’s Aquatic Species Program – biodiesel from algae. Nat. Renew. Energy Lab. Golden, Colorado, Report No. NREL/TP-580–24190 (1998).
  • Ozsolak F, Platt AR, Jones DR et al. Direct RNA sequencing. Nature461(7265),814–818 (2009).
  • Lister R, O’Malley RC, Tonti-Filippini J et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell133(3),523–536 (2008).
  • Nagalakshmi U, Wang Z, Waern K et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science320(5881),1344–1349 (2008).
  • Gonzalez-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR. RNA-Seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell22(6),2058–2084 (2010).
  • Miller R, Wu G, Deshpande RR et al. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen-deprivation predict diversion of metabolism. Plant Physiol.154(4),1737–1752 (2010).
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem.250(10),4007–4021 (1975).
  • Ong S-E, Foster LJ, Mann M. Mass spectrometric-based approaches in quantitative proteomics. Methods29(2),124–130 (2003).
  • Tannu NS, Hemby SE. Methods for proteomics in neuroscience. In: Progress in Brain Research: Functional Genomics and Proteomics in the Clinical Neurosciences. Hemby SE, Bahn S (Eds). Elsevier, Amsterdam, The Netherlands, 41–82 (2006).
  • Ciordia S, Ríos V, Albar J-P. Contributions of advanced proteomics technologies to cancer diagnosis. Clin. Transl. Oncol.8(8),566–580 (2006).
  • Chen X, Sun L, Yu Y, Xue Y, Yang P. Amino acid-coded tagging approaches in quantitative proteomics. Expert Rev. Proteomics4(1),25–37 (2007).
  • Maurya P, Meleady P, Dowling P, Clynes M. Proteomic approaches for serum biomarker discovery in cancer. Anticancer Res.27(3A),1247–1255 (2007).
  • Xun Z, Kaufman TC, Clemmer DE. Stable isotope labeling and label-free proteomics of Drosophila parkin null mutants. J. Proteome Res.8(10),4500–4510 (2009).
  • Pan S, Aebersold R. Quantitative proteomics by stable isotope labeling and mass spectrometry. In: Mass Spectrometry Data Analysis in Proteomics. Matthiesen R (Ed.). Humana Press, NJ, USA 209–218 (2007).
  • Asara JM, Zhang X, Zheng B, Christofk HH, Wu N, Cantley LC. In-gel stable-isotope labeling (ISIL): a strategy for mass spectrometry-based relative quantification. J. Proteome Res.5(1),155–163 (2005).
  • Brun V, Masselon C, Garin J, Dupuis A. Isotope dilution strategies for absolute quantitative proteomics. J. Proteomics72(5),740–749 (2009).
  • Hippler M, Klein J, Fink A, Allinger T, Hoerth P. Towards functional proteomics of membrane protein complexes: analysis of thylakoid membranes from Chlamydomonas reinhardtii. Plant J.28(5),595–606 (2001).
  • Stauber EJ, Fink A, Markert C, Kruse O, Johanningmeier U, Hippler M. Proteomics of Chlamydomonas reinhardtii light-harvesting proteins. Eukaryot. Cell2(5),978–994 (2003).
  • Surzycki R, Cournac L, Peltier G, Rochaix J-D. Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc. Natl Acad. Sci. USA104(44),17548–17553 (2007).
  • van Lis R, Atteia A, Mendoza-Hernandez G, Gonzalez-Halphen D. Identification of novel mitochondrial protein components of Chlamydomonas reinhardtii. A proteomic approach. Plant Physiol.132(1),318–330 (2003).
  • Keller LC, Romijn EP, Zamora I, Yates JR 3rd, Marshall WF. Proteomic analysis of isolated Chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr. Biol.15(12),1090–1098 (2005).
  • Schmidt M, Gessner G, Luff M et al. Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell18(8),1908–1930 (2006).
  • Boesger J, Wagner V, Weisheit W, Mittag M. Analysis of flagellar phosphoproteins from Chlamydomonas reinhardtii. Eukaryot. Cell8(7),922–932 (2009).
  • Liu Q, Tan G, Levenkova N et al. The proteome of the mouse photoreceptor sensory cilium complex. Mol. Cell. Proteomics6(8),1299–1317 (2007).
  • Ostrowski LE, Blackburn K, Radde KM et al. A proteomic analysis of human cilia. Mol. Cell. Proteomics1(6),451–465 (2002).
  • Pazour GJ, Agrin N, Leszyk J, Witman GB. Proteomic analysis of a eukaryotic cilium. J. Cell Biol.170(1),103–113 (2005).
  • Wagner V, Kreimer G, Mittag M. The power of functional proteomics: components of the green algal eyespot and its light signaling pathway(s). Plant Signal. Behav.3(7),433–435 (2008).
  • Buchanan B, Schürmann P, Wolosiuk R, Jacquot J-P. The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth. Res.73(1),215–222 (2002).
  • Lemaire SD, Guillon B, Le Maréchal P, Keryer E, Miginiac-Maslow M, Decottignies P. New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA101(19),7475–7480 (2004).
  • Forster B, Mathesius U, Pogson BJ. Comparative proteomics of high light stress in the model alga Chlamydomonas reinhardtii. Proteomics6(15),4309–4320 (2006).
  • Gillet S, Decottignies P, Chardonnet S, Le Marechal P. Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. Photosynth. Res.89(2–3),201–211 (2006).
  • Naumann B, Busch A, Allmer J et al. Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii. Proteomics7(21),3964–3979 (2007).
  • Cid C, Garcia-Descalzo L, Casado-Lafuente V, Amils R, Aguilera A. Proteomic analysis of the response of an acidophilic strain of Chlamydomonas sp. (Chlorophyta) to natural metal-rich water. Proteomics10(10),2026–2036 (2010).
  • Nguyen AV, Thomas-Hall SR, Malnoe A et al. Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii. Eukaryot. Cell7(11),1965–1979 (2008).
  • Terashima M, Specht M, Naumann B, Hippler M. Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol. Cell. Proteomics9(7),1514–1532 (2010).
  • Chen M, Zhao L, Sun Y-L et al. Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. J. Proteome Res.9(8),3854–3866 (2010).
  • Liska AJ, Shevchenko A, Pick U, Katz A. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol.136(1),2806–2817 (2004).
  • Katz A, Waridel P, Shevchenko A, Pick U. Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC–MS/MS analysis. Mol. Cell. Proteomics6(9),1459–1472 (2007).
  • Jia Y, Xue L, Li J, Liu H. Isolation and proteomic analysis of the halotolerant alga Dunaliella salina flagella using shotgun strategy. Mol. Biol. Reports37(2),711–716 (2010).
  • Wang SB, Hu Q, Sommerfeld M, Chen F. Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae). Proteomics4(3),692–708 (2004).
  • Tran NP, Park JK, Hong SJ, Lee CG. Proteomics of proteins associated with astaxanthin accumulation in the green algae Haematococcus lacustris under the influence of sodium orthovanadate. Biotechnol. Lett.31(12),1917–1922 (2009).
  • Kim YK, Yoo WI, Lee SH, Lee MY. Proteomic analysis of cadmium-induced protein profile alterations from marine alga Nannochloropsis oculata. Ecotoxicology14(6),589–596 (2005).
  • Contreras L, Moenne A, Gaillard F, Potin P, Correa JA. Proteomic analysis and identification of copper stress-regulated proteins in the marine alga Scytosiphon gracilis (Phaeophyceae). Aquat. Toxicol.96(2),85–89 (2010).
  • Vannini C, Marsoni M, Domingo G, Antognoni F, Biondi S, Bracale M. Proteomic analysis of chromate-induced modifications in Pseudokirchneriella subcapitata. Chemosphere76(10),1372–1379 (2009).
  • Herranen M, Battchikova N, Zhang P et al. Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. Plant Physiol.134(1),470–481 (2004).
  • Mata-Cabana A, Florencio FJ, Lindahl M. Membrane proteins from the cyanobacterium Synechocystis sp. PCC 6803 interacting with thioredoxin. Proteomics7(21),3953–3963 (2007).
  • Norling B, Zak E, Andersson B, Pakrasi H. 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett.436(2),189–192 (1998).
  • Srivastava R, Pisareva T, Norling B. Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC 6803. Proteomics5(18),4905–4916 (2005).
  • Huang F, Parmryd I, Nilsson F et al. Proteomics of Synechocystis sp. strain PCC 6803: identification of plasma membrane proteins. Mol. Cell. Proteomics1(12),956–966 (2002).
  • Huang F, Fulda S, Hagemann M, Norling B. Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics6(3),910–920 (2006).
  • Pisareva T, Shumskaya M, Maddalo G, Ilag L, Norling B. Proteomics of Synechocystis sp. PCC 6803. Identification of novel integral plasma membrane proteins. FEBS J.274(3),791–804 (2007).
  • Zhang LF, Yang HM, Cui SX et al. Proteomic analysis of plasma membranes of cyanobacterium Synechocystis sp. Strain PCC 6803 in response to high pH stress. J. Proteome Res.8(6),2892–2902 (2009).
  • Fulda S, Huang F, Nilsson F, Hagemann M, Norling B. Proteomics of Synechocystis sp. strain PCC 6803. Identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur. J. Biochem.267(19),5900–5907 (2000).
  • Fulda S, Mikkat S, Huang F et al. Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics6(9),2733–2745 (2006).
  • Suzuki I, Simon WJ, Slabas AR. The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. J. Exp. Bot.57(7),1573–1578 (2006).
  • Kurian D, Phadwal K, Maenpaa P. Proteomic characterization of acid stress response in Synechocystis sp. PCC 6803. Proteomics6(12),3614–3624 (2006).
  • Gao Y, Xiong W, Li XB et al. Identification of the proteomic changes in Synechocystis sp. PCC 6803 following prolonged UV-B irradiation. J. Exp. Bot.60(4),1141–1154 (2009).
  • Pandhal J, Noirel J, Wright PC, Biggs CA. A systems biology approach to investigate the response of Synechocystis sp. PCC6803 to a high salt environment. Saline Systems5,8 (2009).
  • Koksharova OA, Klint J, Rasmussen U. Comparative proteomics of cell division mutants and wild-type of Synechococcus sp. strain PCC 7942. Microbiology153(Pt 8),2505–2517 (2007).
  • Long BM, Badger MR, Whitney SM, Price GD. Analysis of carboxysomes from Synechococcus PCC7942 reveals multiple Rubisco complexes with carboxysomal proteins CcmM and CcaA. J. Biol. Chem.282(40),29323–29335 (2007).
  • Stensjo K, Ow SY, Barrios-Llerena ME, Lindblad P, Wright PC. An iTRAQ-based quantitative analysis to elaborate the proteomic response of Nostoc sp. PCC 7120 under N2 fixing conditions. J. Proteome Res.6(2),621–635 (2007).
  • Ow SY, Cardona T, Taton A et al. Quantitative shotgun proteomics of enriched heterocysts from Nostoc sp. PCC 7120 using 8-plex isobaric peptide tags. J. Proteome Res.7(4),1615–1628 (2008).
  • Anderson DC, Campbell EL, Meeks JC. A soluble 3D LC–MS/MS proteome of the filamentous cyanobacterium Nostoc punctiforme. J. Proteome Res.5(11),3096–3104 (2006).
  • Ran L, Huang F, Ekman M, Klint J, Bergman B. Proteomic analyses of the photoauto- and diazotrophically grown cyanobacterium Nostoc sp. PCC 73102. Microbiology153(Pt 2),608–618 (2007).
  • Barrios-Llerena ME, Reardon KF, Wright PC. 2-DE proteomic analysis of the model cyanobacterium Anabaena variabilis. Electrophoresis28(10),1624–1632 (2007).
  • Bhargava P, Mishra Y, Srivastava AK, Narayan OP, Rai LC. Excess copper induces anoxygenic photosynthesis in Anabaena doliolum: a homology based proteomic assessment of its survival strategy. Photosynth. Res.96(1),61–74 (2008).
  • Mishra Y, Chaurasia N, Rai LC. Heat pretreatment alleviates UV-B toxicity in the cyanobacterium Anabaena doliolum: a proteomic analysis of cross tolerance. Photochem. Photobiol.85(3),824–833 (2009).
  • Hongsthong A, Sirijuntarut M, Prommeenate P et al. Revealing differentially expressed proteins in two morphological forms of Spirulina platensis by proteomic analysis. Mol. Biotechnol.36(2),123–130 (2007).
  • Hongsthong A, Sirijuntarut M, Prommeenate P et al. Proteome analysis at the subcellular level of the cyanobacterium Spirulina platensis in response to low-temperature stress conditions. FEMS Microbiol. Lett.288(1),92–101 (2008).
  • Jeamton W, Mungpakdee S, Sirijuntarut M et al. A combined stress response analysis of Spirulina platensis in terms of global differentially expressed proteins, and mRNA levels and stability of fatty acid biosynthesis genes. FEMS Microbiol. Lett.281(2),121–131 (2008).
  • Pandhal J, Wright PC, Biggs CA. A quantitative proteomic analysis of light adaptation in a globally significant marine cyanobacterium Prochlorococcus marinus MED4. J. Proteome Res.6(3),996–1005 (2007).
  • Sharif DI, Gallon J, Smith CJ, Dudley E. Quorum sensing in cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909. ISME J.2(12),1171–1182 (2008).
  • Matsumoto M, Sugiyama H, Maeda Y, Sato R, Tanaka T, Matsunaga T. Marine diatom, Navicula sp. strain JPCC DA0580 and marine green alga, Chlorella sp. strain NKG400014 as potential sources for biodiesel production. Appl. Biochem. Biotechnol.161(1–8),483–490 (2010).
  • Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR. Biomass productivities in wild type and pigment mutant of Cyclotella sp. (Diatom). Appl. Biochem. Biotechnol.157(3),507–526 (2009).
  • Nunn BL, Aker JR, Shaffer SA et al. Deciphering diatom biochemical pathways via whole-cell proteomics. Aquat. Microb. Ecol.55(3),241–253 (2009).
  • Grimsrud PA, Swaney DL, Wenger CD, Beauchene NA, Coon JJ. Phosphoproteomics for the masses. ACS Chem. Biol.5(1),105–119 (2010).
  • Collins MO, Yu L, Choudhary JS. Analysis of protein phosphorylation on a proteome-scale. Proteomics7(16),2751–2768 (2007).
  • Young NL, Plazas-Mayorca MD, Garcia BA. Systems-wide proteomic characterization of combinatorial post-translational modification patterns. Expert Rev. Proteomics7(1),79–92 (2010).
  • Amoresano A, Carpentieri A, Giangrande C et al. Technical advances in proteomics mass spectrometry: identification of post-translational modifications. Clin. Chem. Lab.Med.47(6),647–665 (2009).
  • Farley AR, Link AJ. Identification and quantification of protein posttranslational modifications. Methods Enzymol.463,725–763 (2009).
  • Goonewardena SN, Prevette LE, Desai AA. Metabolomics and atherosclerosis. Curr. Atheroscler. Rep.12(4),267–272 (2010).
  • Oakman C, Tenori L, Biganzoli L et al. Uncovering the metabolomic fingerprint of breast cancer. Int. J. Biochem.Cell Biol. DOI: 10.1016/j.biocel.2010.05.001 (2010). (Epub ahead of print).
  • Aravindaram K, Yang NS. Anti-inflammatory plant natural products for cancer therapy. Planta Med.76(11),1103–1117 (2010).
  • Young SP, Wallace GR. Metabolomic analysis of human disease and its application to the eye. J. Ocul. Biol. Dis. Infor.2(4),235–242 (2009).
  • Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal. Bioanal. Chem.387(2),525–527 (2007).
  • Oh E, Hasan MN, Jamshed M et al. Growing trend of CE at the omics level: the frontier of systems biology. Electrophoresis31(1),74–92 (2010).
  • Fonslow BR, Yates JR, 3rd. Capillary electrophoresis applied to proteomic analysis. J. Sep. Sci.32(8),1175–1188 (2009).
  • Bolling C, Fiehn O. Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol.139(4),1995–2005 (2005).
  • Lee do Y, Fiehn O. High quality metabolomic data for Chlamydomonas reinhardtii. Plant Methods4,7 (2008).
  • May P, Wienkoop S, Kempa S et al. Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii. Genetics179(1),157–166 (2008).
  • Wienkoop S, Weiss J, May P et al. Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. Mol. BioSyst.6(6),1018–1031 (2010).
  • Sans-Piche F, Kluender C, Altenburger R, Schmitt-Jansen M. Anchoring metabolic changes to phenotypic effects in the chlorophyte Scenedesmus vacuolatus under chemical exposure. Mar. Envir. Res.69,S28–S30 (2010).
  • Lin Y, Schiavo S, Orjala J, Vouros P, Kautz R. Microscale LC–MS–NMR platform applied to the identification of active cyanobacterial metabolites. Anal. Chem.80(21),8045–8054 (2008).
  • Krall L, Huege J, Catchpole G, Steinhauser D, Willmitzer L. Assessment of sampling strategies for gas chromatography-mass spectrometry (GC–MS) based metabolomics of cyanobacteria. J. Chromatogr. B Anal. Technol. Biomed. Life Sci.877(27),2952–2960 (2009).
  • Allen AE, Laroche J, Maheswari U et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl Acad. Sci. USA105(30),10438–10443 (2008).
  • Motta A, Paris D, Melck D. Monitoring real-time metabolism of living cells by fast two-dimensional NMR spectroscopy. Anal. Chem.82(6),2405–2411 (2010).
  • Vieler A, Wilhelm C, Goss R, Süß R, Schiller J. The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC. Chem. Phys. Lipids150(2),143–155 (2007).
  • Beal CM, Webber ME, Ruoff RS, Hebner RE. Lipid analysis of Neochloris oleoabundans by liquid state NMR. Biotechnol. Bioeng.106(4),573–583 (2010).
  • Work VH, Radakovits R, Jinkerson RE et al. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7–10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot. Cell9(8),1251–1261 (2010).
  • Laurens L, Wolfrum E. Feasibility of spectroscopic characterization of algal lipids: chemometric correlation of NIR and FTIR spectra with exogenous lipids in algal biomass. BioEnergy Res.1–14 (2010).
  • Hu Q, Sommerfeld M, Jarvis E et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J.54(4),621–639 (2008).
  • Riekhof WR, Sears BB, Benning C. Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr. Eukaryot. Cell4(2),242–252 (2005).
  • Radakovits R, Eduafo PM, Posewitz MC. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab. Eng.13(1),89–95 (2010).
  • Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol.19(3),1720–1730 (1999).
  • ter Kuile BH, Westerhoff HV. Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett.500(3),169–171 (2001).
  • Kizer L, Pitera DJ, Pfleger BF, Keasling JD. Application of functional genomics to pathway optimization for increased isoprenoid production. Appl. Envir. Microbiol.74(10),3229–3241 (2008).
  • Pitera DJ, Paddon CJ, Newman JD, Keasling JD. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metabol. Eng.9(2),193–207 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.