318
Views
0
CrossRef citations to date
0
Altmetric
Review

Practical Synthesis of Fluorine-Containing α- and β-Amino Acids: Recipes from Kiev, Ukraine

, &
Pages 793-819 | Published online: 19 Aug 2009
 

Abstract

Naturally occurring compounds containing a C-F bond are extremely rare; only a handful of fluorine-containing carboxylic acids have been described so far. By contrast, man-made fluorine-containing derivatives of all major classes of biologically important compounds are extremely promising medicinal targets used in the elucidation of biochemical, metabolic transformations and the development of new pharmaceuticals. Among the fluorine-containing derivatives of natural products, fluorinated analogs of amino acids are of particular interest and medicinal potential. This article presents a concise review of various synthetic methods, developed by the Kiev’s school of bioorganic chemistry, for the preparation of fluorine-containing analogs of α- and β-amino acids, α-hydroxy acids, amines, as well as their phosphorus and sulfur-derived compounds, in enantiomerically pure form. One of the major methodological goals of the study was practicality, which is understood by us as stereochemical generality, operational convenience and synthetic affordance for each reaction step and isolation of the target products. The synthetic methods developed by our group can be roughly divided in two general categories: fluorine-adaptation of known synthetic approaches and discovery of new reactions. The former approach is most prominently represented by asymmetric homologation of nucleophilic glycine equivalents using fluorinated substrates via alkyl halide alkylations, aldol and Michael addition reactions. A plethora of discovered unexpected reaction outcomes, in particular stereochemical, are emphasized in this review and the particular role of fluorine, in altering the ‘normal’ reaction result, is explained. The latter direction is notably represented by the novel 1,3-proton shift reaction, a biomimetic reductive amination of fluorinated carbonyl compounds to the corresponding amines and amino acids, as well as the development of α-fluoroalkyl epoxides as true fluorinated synthons for generalized asymmetric synthesis of various biologically relevant compounds. Despite the highly anticipated potential of fluorine-containing amino compounds, their medicinal chemistry still remains underexplored. The major obstacle, in our opinion, is that these selectively fluorinated compounds are generally unavailable to the medicinal chemists for comprehensive, systematic study. We hope this review of synthetic methods will highlight and bring attention to particular types of fluorinated amino acids and related compounds readily available on a laboratory scale using methods developed by our group.

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Additional information

Funding

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.