861
Views
7
CrossRef citations to date
0
Altmetric
Autophagic Punctum

Programmed nuclear destruction in yeast

Self-eating by vacuolar lysis

, &
Pages 263-265 | Received 05 Nov 2012, Accepted 13 Nov 2012, Published online: 27 Nov 2012
 

Abstract

Studies of the budding yeast Saccharomyces cerevisiae have provided many of the most important insights into the mechanisms of autophagy, which are common to all eukaryotes. However, investigation of yeast self-destruction pathways, including autophagy and programmed cell death, has been almost exclusively restricted to cells undergoing vegetative growth, leaving very little exploration of their functions during developmental transitions in the yeast life cycle. We have recently discovered that whole nuclei are subject to programmed destruction during yeast gametogenesis. Programmed nuclear destruction (PND) possesses characteristics of apoptosis in the form of DNA cleavage by endonuclease G, and involves bulk protein turnover through an unusual autophagic pathway involving lysis of the vacuole rather than delivery of components to it through macroautophagy. We thus illuminate an example of developmentally programmed cellular “self-eating” in yeast, which is associated with the rupture of a lytic organelle, reminiscent of programmed cell death mechanisms in plants and animals.

This article refers to:

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.